首页|基于多分支多尺度卷积网络的心房颤动检测模型

基于多分支多尺度卷积网络的心房颤动检测模型

扫码查看
心房颤动(房颤)是危及生命的心脏病之一,其早期检测和治疗近年来备受医生关注.传统的房颤检测方式主要依靠医生对心电图的诊断,但长时间的心电信号分析非常耗时.本文设计出一种基于Inception模块的房颤检测模型,构建多分支检测通道来处理房颤时的心电图原始信号、梯度信号和频率信号.该模型利用梯度信号高效地提取QRS波段和RR间期特征,利用频率信号提取P波与f波特征,并使用原始信号补充丢失信息.Inception模块中多尺度卷积核提供多种感受视野,并对多分支结果进行综合分析,从而实现房颤的早期检测.相较于目前的机器学习算法仅利用RR间期和心率变异性等特征,本文提出的算法额外使用频率特征,充分利用信号中的信息;对于使用原始信号和频率信息的深度学习方法,本文提出强化QRS波段的方法,使网络更有效地提取特征,并通过多分支输入模式综合考虑房颤RR间期不规律和P波与f波特征信息.在麻省理工房颤数据集上的检测结果显示,患者间检测的准确率为96.89%,灵敏度为97.72%,特异性为95.88%.该模型表现出色,能够实现房颤的自动检测.
Detection model of atrial fibrillation based on multi-branch and multi-scale convolutional networks
Atrial fibrillation(AF)is a life-threatening heart condition,and its early detection and treatment have garnered significant attention from physicians in recent years.Traditional methods of detecting AF heavily rely on doctor's diagnosis based on electrocardiograms(ECGs),but prolonged analysis of ECG signals is very time-consuming.This paper designs an AF detection model based on the Inception module,constructing multi-branch detection channels to process raw ECG signals,gradient signals,and frequency signals during AF.The model efficiently extracted QRS complex and RR interval features using gradient signals,extracted P-wave and f-wave features using frequency signals,and used raw signals to supplement missing information.The multi-scale convolutional kernels in the Inception module provided various receptive fields and performed comprehensive analysis of the multi-branch results,enabling early AF detection.Compared to current machine learning algorithms that use only RR interval and heart rate variability features,the proposed algorithm additionally employed frequency features,making fuller use of the information within the signals.For deep learning methods using raw and frequency signals,this paper introduced an enhanced method for the QRS complex,allowing the network to extract features more effectively.By using a multi-branch input mode,the model comprehensively considered irregular RR intervals and P-wave and f-wave features in AF.Testing on the MIT-BIH AF database showed that the inter-patient detection accuracy was 96.89%,sensitivity was 97.72%,and specificity was 95.88%.The proposed model demonstrates excellent performance and can achieve automatic AF detection.

Atrial fibrillation detectionMulti-branch neural networkMulti-scale convolutionMixed loss function

赵思宇、刘明、刘名起、杨晓茹、熊鹏、张杰烁

展开 >

河北大学电子信息工程学院(河北保定 071002)

保定市生产力促进中心(河北保定 071023)

房颤检测 多分支网络 多尺度卷积 混合损失函数

国家自然科学基金国家自然科学基金河北省自然科学基金

6227608761703133F2022201037

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(4)