首页|基于卷积神经网络的结直肠癌识别研究进展

基于卷积神经网络的结直肠癌识别研究进展

扫码查看
结直肠癌是一种常见的胃肠道恶性肿瘤,严重威胁人类健康.由于结直肠癌区边界模糊,使得对结直肠癌的准确识别存在很大挑战.随着卷积神经网络在图像处理领域应用的普及,利用卷积神经网络进行结直肠癌的自动分类与分割,在提高结直肠癌识别效率、降低癌症治疗成本方面具有很大潜力.本文论述了卷积神经网络在结直肠癌临床诊断中应用的必要性;详细介绍了目前卷积神经网络及其改进型在结直肠癌分类和分割两个部分中的研究进展;总结了对于网络性能优化的思路和常用方法,并讨论了卷积神经网络应用在结直肠癌分类与分割中所面对的挑战和未来的发展趋势,以促进卷积神经网络在结直肠癌临床诊断中的应用.
Research progress on colorectal cancer identification based on convolutional neural network
Colorectal cancer(CRC)is a common malignant tumor that seriously threatens human health.CRC presents a formidable challenge in terms of accurate identification due to its indistinct boundaries.With the widespread adoption of convolutional neural networks(CNNs)in image processing,leveraging CNNs for automatic classification and segmentation holds immense potential for enhancing the efficiency of colorectal cancer recognition and reducing treatment costs.This paper explores the imperative necessity for applying CNNs in clinical diagnosis of CRC.It provides an elaborate overview on research advancements pertaining to CNNs and their improved models in CRC classification and segmentation.Furthermore,this work summarizes the ideas and common methods for optimizing network performance and discusses the challenges faced by CNNs as well as future development trends in their application towards CRC classification and segmentation,thereby promoting their utilization within clinical diagnosis.

Convolutional neural networkMedical imageColorectal cancer classificationColorectal cancer segmentationOptimization method

潘兴亮、童珂、鄢成东、罗金龙、杨华、丁菊容

展开 >

四川轻化工大学自动化与信息工程学院(四川自贡 643000)

四川轻化工大学人工智能四川省重点实验室(四川自贡 643000)

自贡市第四人民医院汇东普外科(四川自贡 643000)

卷积神经网络 医学图像 结直肠癌分类 结直肠癌分割 优化方法

国家自然科学基金四川轻化工大学研究生创新基金

81401482Y2023276

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(4)