首页|基于两步频域集合经验模态分解和典型相关性分析的运动心阻抗血流图信号的去噪方法研究

基于两步频域集合经验模态分解和典型相关性分析的运动心阻抗血流图信号的去噪方法研究

扫码查看
心阻抗血流图(ICG)在心血管疾病患者心功能评价中发挥重要作用.针对ICG信号的测量容易受运动伪迹的干扰问题,本文提出了两步频域集合经验模态分解(EEMD)和典型相关性分析(CCA)的去噪方法.首先,将ICG信号、心电图(ECG)分别与运动信号做第一步频域EEMD-CCA,将相关性系数高的成分置零来抑制主要运动伪迹.其次,将得到的ECG和ICG信号做第二步频域EEMD-CCA,获取这两组生理信号之间的共同成分来进一步去噪.最后,利用这些共同成分来重构ICG信号.本研究招募了 30名志愿者参与测试,结果表明,使用本文提出的去噪方法后,ICG信号的质量有大幅度的提升,可为后续的心血管疾病诊断和分析提供支撑.
Research on motion impedance cardiography de-noising method based on two-step spectral ensemble empirical mode decomposition and canonical correlation analysis
Impedance cardiography(ICG)is essential in evaluating cardiac function in patients with cardiovascular diseases.Aiming at the problem that the measurement of ICG signal is easily disturbed by motion artifacts,this paper introduces a de-noising method based on two-step spectral ensemble empirical mode decomposition(EEMD)and canonical correlation analysis(CCA).Firstly,the first spectral EEMD-CCA was performed between ICG and motion signals,and electrocardiogram(ECG)and motion signals,respectively.The component with the strongest correlation coefficient was set to zero to suppress the main motion artifacts.Secondly,the obtained ECG and ICG signals were subjected to a second spectral EEMD-CCA for further denoising.Lastly,the ICG signal is reconstructed using these share components.The experiment was tested on 30 subjects,and the results showed that the quality of the ICG signal is greatly improved after using the proposed denoising method,which could support the subsequent diagnosis and analysis of cardiovascular diseases.

Canonical correlation analysisImpedance cardiographyMotion artifactsDenoising method

解尧、杨东、余洪龙、解启莲

展开 >

中国科学技术大学信息科学技术学院(合肥 230022)

安徽通灵仿生科技有限公司(合肥 230601)

安徽医科大学临床医学院(合肥 230032)

典型相关性分析 心阻抗血流图 运动伪迹 去噪方法

国家重点研发计划

2020YFC2004400

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(5)