首页|基于小样本临床指标数据的引产预测模型构建

基于小样本临床指标数据的引产预测模型构建

扫码查看
由于临床指标的多样性和复杂性,现有方法难以建立全面可靠的引产结果预测模型.因此,本研究旨在分析引产相关的临床指标,并建立和评估基于小样本数据的预测模型.研究对象为上海市第一妇婴保健院在2023年2月至2024年1月期间进行引产的90例孕产妇,临床指标共记录52项.采用最大信息系数(MIC)对临床指标进行特征选择,以降低特征高维特性引起的过拟合风险.然后,基于MIC选择的特征,将基于小样本的支持向量机(SVM)模型与基于大样本的全连接神经网络(FCNN)模型进行对比分析,并绘制受试者工作特征曲线(ROC).通过计算MIC分值,特征维数由55维降至15维,SVM模型的曲线下面积(AUC)从特征选择前的0.872提高至0.923.模型对比结果显示,SVM的预测性能优于FCNN.研究表明,采用SVM进行引产结果预测效果良好,MIC特征选择有效地提高了模型的泛化能力.这一研究为引产结果的预测提供了可靠方法,具有潜在的临床应用前景.
Construction of a prediction model for induction of labor based on a small sample of clinical indicator data
Because of the diversity and complexity of clinical indicators,it is difficult to establish a comprehensive and reliable prediction model for induction of labor(IOL)outcomes with existing methods.This study aims to analyze the clinical indicators related to IOL and to develop and evaluate a prediction model based on a small-sample of data.The study population consisted of a total of 90 pregnant women who underwent IOL between February 2023 and January 2024 at the Shanghai First Maternity and Infant Healthcare Hospital,and a total of 52 clinical indicators were recorded.Maximal information coefficient(MIC)was used to select features for clinical indicators to reduce the risk of overfitting caused by high-dimensional features.Then,based on the features selected by MIC,the support vector machine(SVM)model based on small samples was compared and analyzed with the fully connected neural network(FCNN)model based on large samples in deep learning,and the receiver operating characteristic(ROC)curve was given.By calculating the MIC score,the final feature dimension was reduced from 55 to 15,and the area under curve(AUC)of the SVM model was improved from 0.872 before feature selection to 0.923.Model comparison results showed that SVM had better prediction performance than FCNN.This study demonstrates that SVM successfully predicted IOL outcomes,and the MIC feature selection effectively improves the model's generalization ability,making the prediction results more stable.This study provides a reliable method for predicting the outcome of induced labor with potential clinical applications.

Induction of laborMaximal information coefficientSupport vector machineFully connected neural networkPredictive modelOverfitting

秦雅莉、姚莉萍、袁玲、陈胜

展开 >

上海理工大学光电信息与计算机工程学院(上海 200093)

上海市第一妇婴保健院超声科(上海 201204)

上海市第一妇婴保健院产科(上海 201204)

引产 最大信息系数 支持向量机 全连接神经网络 预测模型 过拟合

国家自然科学基金青年基金

81101116

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(5)