首页|类器官图像深度感知技术研究综述

类器官图像深度感知技术研究综述

扫码查看
类器官是一种能够模拟体内组织复杂结构和功能的体外模型,通过类器官图像分析已能实现分类、筛选、轨迹识别等功能,但仍存在识别分类和细胞追踪精度较低等问题.深度学习算法与类器官图像融合分析是目前最前沿的类器官图像分析方法.本文对类器官图像深度感知技术研究进行了调研整理,介绍了类器官培养机制及其在深度感知中的应用概念,分别综述了类器官图像与分类识别、模式检测、图像分割以及动态追踪等4种深度感知算法的关键进展,对比分析了不同深度模型间的性能优势.此外,本文还从深度感知特征学习、模型泛化性和多种评价参数等方面对各类器官图像深度感知技术进行了归纳总结,并对未来基于深度学习方法的类器官发展趋势进行了展望,以此促进深度感知技术在类器官图像方面的应用,为该领域的学术研究和实践应用提供了重要参考.
A review on depth perception techniques in organoid images
Organoids are an in vitro model that can simulate the complex structure and function of tissues in vivo.Functions such as classification,screening and trajectory recognition have been realized through organoid image analysis,but there are still problems such as low accuracy in recognition classification and cell tracking.Deep learning algorithm and organoid image fusion analysis are the most advanced organoid image analysis methods.In this paper,the organoid image depth perception technology is investigated and sorted out,the organoid culture mechanism and its application concept in depth perception are introduced,and the key progress of four depth perception algorithms such as organoid image and classification recognition,pattern detection,image segmentation and dynamic tracking are reviewed respectively,and the performance advantages of different depth models are compared and analyzed.In addition,this paper also summarizes the depth perception technology of various organ images from the aspects of depth perception feature learning,model generalization and multiple evaluation parameters,and prospects the development trend of organoids based on deep learning methods in the future,so as to promote the application of depth perception technology in organoid images.It provides an important reference for the academic research and practical application in this field.

Organoid imageDeep learningDepth perception technology

孙渝、黄凤良、张瀚文、江浩、罗刚银

展开 >

南京师范大学电气与自动化工程学院(南京 210023)

中国科学院苏州生物医学工程技术研究所中国科学院先进体外诊断技术工程实验室(江苏苏州 215163)

类器官图像 深度学习 深度感知技术

中国科学院先导专项课题(A类)中国科学院科研仪器设备研制项目苏州市重大疾病、传染病预防和控制关键技术(研究)项目苏州市重大疾病、传染病预防和控制关键技术(研究)项目

XDA16021100ZDZBGCH201800320210419115032678GWZX202102

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(5)