首页|基于独立成分分析—递归图和改进的高效能网络的脑电情绪识别研究

基于独立成分分析—递归图和改进的高效能网络的脑电情绪识别研究

扫码查看
为精准捕获并有效融合脑电信号中的时空特征以提高脑电情绪识别精度,本文提出一种基于独立成分分析—递归图和改进的第2代高效能网络(EfficientNetV2)相结合的新方法.首先,采用独立成分分析从脑电信号的关键通道中提取包含空间信息的独立成分;然后,由递归图转换为二维图像以更好地提取时间信息中的情感特征;最后,将二维图像输入到引入全局注意力机制和三重注意力机制的EfficientNetV2中,由全连接层输出情感分类.为验证所提方法的有效性,本研究基于上海交通大学情绪脑电数据集(SEED)进行对比实验、通道选择实验和消融实验.研究结果显示,本文所提方法平均识别准确率为96.77%,显著优于现有其他方法,为脑电情绪识别研究提供了新的思路.
Research on emotion recognition in electroencephalogram based on independent component analysis-recurrence plot and improved EfficientNet
To accurately capture and effectively integrate the spatiotemporal features of electroencephalogram(EEG)signals for the purpose of improving the accuracy of EEG-based emotion recognition,this paper proposes a new method combining independent component analysis-recurrence plot with an improved EfficientNet version 2(EfficientNetV2).First,independent component analysis is used to extract independent components containing spatial information from key channels of the EEG signals.These components are then converted into two-dimensional images using recurrence plot to better extract emotional features from the temporal information.Finally,the two-dimensional images are input into an improved EfficientNetV2,which incorporates a global attention mechanism and a triplet attention mechanism,and the emotion classification is output by the fully connected layer.To validate the effectiveness of the proposed method,this study conducts comparative experiments,channel selection experiments and ablation experiments based on the Shanghai Jiao Tong University Emotion Electroencephalogram Dataset(SEED).The results demonstrate that the average recognition accuracy of our method is 96.77%,which is significantly superior to existing methods,offering a novel perspective for research on EEG-based emotion recognition.

ElectroencephalogramEmotion recognitionIndependent component analysisRecurrence plotEfficientNetAttention mechanism

冯国红、郑潇、张彬、王宏恩

展开 >

东北林业大学机电工程学院(哈尔滨 150040)

脑电 情绪识别 独立成分分析 递归图 高效能网络 注意力机制

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)