首页|融合脑电多域特征和功能连接的早期痴呆症识别

融合脑电多域特征和功能连接的早期痴呆症识别

扫码查看
痴呆症是一种与脑网络功能失调密切相关的神经退行性疾病.本研究基于相位锁值来评估早期痴呆症患者脑区间的相互依赖关系,并构建功能性脑网络,基于复杂网络分析方法选择网络特征参数进行度量.同时,分别提取表征脑电信号时域、频域和时频域特征的熵值信息,以及Hjorth和Hurst指标等非线性动力学特征.基于统计分析筛选在不同病症之间存在显著差异的特征参数构建特征向量,最后利用多种机器学习算法实现对痴呆症患者早期类别的识别.结果表明,多特征的融合在阿尔茨海默症、额颞叶痴呆与健康对照组的分类中表现优异,尤其在阿尔茨海默症与健康对照组的识别中,β频段的准确率达到98%,显示了方法的有效性.本研究为痴呆症早期诊断提供了新思路,也为计算机辅助诊断提方法供了参考.
Fusion of electroencephalography multi-domain features and functional connectivity for early dementia recognition
1 Dementia is a neurodegenerative disease closely related to brain network dysfunction.In this study,we assessed the interdependence between brain regions in patients with early-stage dementia based on phase-lock values,and constructed a functional brain network,selecting network feature parameters for metrics based on complex network analysis methods.At the same time,the entropy information characterizing the EEG signals in time domain,frequency domain and time-frequency domain,as well as the nonlinear dynamics features such as Hjorth and Hurst indexes were extracted,respectively.Based on the statistical analysis,the feature parameters with significant differences between different conditions were screened to construct feature vectors,and finally multiple machine learning algorithms were used to realize the recognition of early categories of dementia patients.The results showed that the fusion of multiple features performed well in the categorization of Alzheimer's disease,frontotemporal lobe dementia and healthy controls,especially in the identification of Alzheimer's disease and healthy controls,the accuracy of β-band reached 98%,which showed its effectiveness.This study provides new ideas for the early diagnosis of dementia and computer-assisted diagnostic methods.

DementiaElectroencephalographyFunctional brain networksNonlinear kinetic featuresFusion features

常文文、郑磊、闫光辉、吕仁杰、聂文超、郭斌

展开 >

兰州交通大学电子与信息工程学院(兰州 730070)

西北工业大学计算机学院(西安 710129)

痴呆症 脑电图 脑功能网络 非线性动力学特征 融合特征

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)