首页|基于空-频特征图学习三维卷积神经网络的运动想象脑电解码方法

基于空-频特征图学习三维卷积神经网络的运动想象脑电解码方法

扫码查看
运动想象脑电(EEG)的脑机接口因其无创采集和易用性等优势,在神经康复领域展现了巨大潜力.然而,运动想象EEG具有较低的信噪比和时空分辨率,且传统神经网络仅关注其时空特征,导致运动想象任务的解码识别率较低.为解决这一问题,本文从EEG信号的频域和空间域角度出发,提出了一种基于空-频特征图学习的三维卷积神经网络解码方法.首先,利用Welch方法计算EEG的频带功率谱,结合电极空间拓扑分布的二维矩阵将时序EEG转换为包含空-频信息的脑地形图.然后,设计一维和二维卷积串行结构的三维网络,以有效学习EEG空-频特征.最后,该方法与多种经典方法进行对比实验,结果显示平均解码识别率达86.89%,较对照方法更优,验证了该方法在运动想象EEG解码领域的有效性.
Three-dimensional convolutional neural network based on spatial-spectral feature pictures learning for decoding motor imagery electroencephalography signal
The brain-computer interface(BCI)based on motor imagery electroencephalography(EEG)shows great potential in neurorehabilitation due to its non-invasive nature and ease of use.However,motor imagery EEG signals have low signal-to-noise ratios and spatiotemporal resolutions,leading to low decoding recognition rates with traditional neural networks.To address this,this paper proposed a three-dimensional(3D)convolutional neural network(CNN)method that learns spatial-frequency feature maps,using Welch method to calculate the power spectrum of EEG frequency bands,converted time-series EEG into a brain topographical map with spatial-frequency information.A 3D network with one-dimensional and two-dimensional convolutional layers was designed to effectively learn these features.Comparative experiments demonstrated that the average decoding recognition rate reached 86.89%,outperforming traditional methods and validating the effectiveness of this approach in motor imagery EEG decoding.

Motor imagery electroencephalographyBrain-computer interfaceSpatial-spectral feature pictureFeature selectionSignal decoding

吴雪健、褚亚奇、赵新刚、赵忆文

展开 >

中国科学院沈阳自动化研究所机器人学国家重点实验室(沈阳 110016)

中国科学院大学(北京 100049)

运动想象脑电 脑机接口系统 空-频特征图 特征选择 信号解码

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)