首页|基于表面肌电信号灰度图和多视野卷积神经网络的手势精确识别方法

基于表面肌电信号灰度图和多视野卷积神经网络的手势精确识别方法

扫码查看
针对表面肌电信号时域和频域特征提取识别手势的准确性易受影响及分类器识别率低的问题,本文提出一种将表面肌电信号处理为灰度图,并结合卷积神经网络作为分类器的手势精确识别方法.首先,使用能量阈值法截取肌电信号的活动段,通过线性和幂运算对时域电压值进行处理,生成灰度图作为卷积神经网络的输入.其次,搭建多视野卷积神经网络模型,使用1 × n和3×n的异形卷积核,在同一卷积层内实现不同尺寸卷积核并行的结构,以优化对肌电信号的表达能力.实验结果表明,所提出的方法对13种手势和12种多指运动的识别准确率分别达到98.11%和98.75%,显著高于现有机器学习方法.本文提出的基于肌电信号灰度图与多视野卷积神经网络的手势识别方法,具有简单高效的特点,能够有效提升手势识别的准确性,具有较强的应用潜力.
Gesture accuracy recognition based on grayscale image of surface electromyogram signal and multi-view convolutional neural network
This study aims to address the limitations in gesture recognition caused by the susceptibility of temporal and frequency domain feature extraction from surface electromyography signals,as well as the low recognition rates of conventional classifiers.A novel gesture recognition approach was proposed,which transformed surface electromyography signals into grayscale images and employed convolutional neural networks as classifiers.The method began by segmenting the active portions of the surface electromyography signals using an energy threshold approach.Temporal voltage values were then processed through linear scaling and power transformations to generate grayscale images for convolutional neural network input.Subsequently,a multi-view convolutional neural network model was constructed,utilizing asymmetric convolutional kernels of sizes 1 × n and 3 × n within the same layer to enhance the representation capability of surface electromyography signals.Experimental results showed that the proposed method achieved recognition accuracies of 98.11%for 13 gestures and 98.75%for 12 multi-finger movements,significantly outperforming existing machine learning approaches.The proposed gesture recognition method,based on surface electromyography grayscale images and multi-view convolutional neural networks,demonstrates simplicity and efficiency,substantially improving recognition accuracy and exhibiting strong potential for practical applications.

Convolutional neural networkSurface electromyographyGrayscale imageGesture recognition

陈清正、陶庆、张小栋、胡学政、张天乐

展开 >

新疆大学智能制造现代产业学院(机械工程学院)(乌鲁木齐 830017)

西安交通大学机械工程学院(西安 710049)

卷积神经网络 表面肌电信号 灰度图 手势识别

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)