首页|基于Mamba和卷积的双流特征金字塔网络用于脑部核磁共振图像配准

基于Mamba和卷积的双流特征金字塔网络用于脑部核磁共振图像配准

扫码查看
可变形图像配准在医学图像分析领域扮演着至关重要的角色.尽管目前已经提出了各种先进的配准模型,但准确和高效的可变形配准仍然具有挑战性.鉴于Mamba最近在计算机视觉任务中展现出的优异性能,本文介绍了一种新模型,称为MCRDP-Net.MCRDP-Net采用了 Mamba块和卷积块结合的双流网络架构同时提取固定图像和运动图像的全局信息和局部信息;在解码阶段,采用了特征金字塔结构的网络,以获得运动图像与固定图像之间的全分辨率形变场,从而实现高效且精确的配准.本研究在公共脑部配准数据集OASIS和IXI上验证了 MCRDP-Net的有效性.实验结果显示,MCRDP-Net在医学图像配准任务中表现出显著优势,OASIS数据集上DSC、HD95和ASD分别达到0.815、8.123和0.521,IXI数据集上分别达到0.773、7.786和0.871.综上所述,MCRDP-Net在可变形图像配准任务中展现了优越的性能,证明了它在医学图像分析领域的潜力,能够有效提升配准的准确性和效率,为后续的医学研究与应用提供了有力支持.
The dual-stream feature pyramid network based on Mamba and convolution for brain magnetic resonance image registration
Deformable image registration plays a crucial role in medical image analysis.Despite various advanced registration models having been proposed,achieving accurate and efficient deformable registration remains challenging.Leveraging the recent outstanding performance of Mamba in computer vision,we introduced a novel model called MCRDP-Net.MCRDP-Net adapted a dual-stream network architecture that combined Mamba blocks and convolutional blocks to simultaneously extract global and local information from fixed and moving images.In the decoding stage,we employed a pyramid network structure to obtain high-resolution deformation fields,achieving efficient and precise registration.The effectiveness of MCRDP-Net was validated on public brain registration datasets,OASIS and IXI.Experimental results demonstrated significant advantages of MCRDP-Net in medical image registration,with DSC,HD95,and ASD reaching 0.815,8.123,and 0.521 on the OASIS dataset and 0.773,7.786,and 0.871 on the IXI dataset.In summary,MCRDP-Net demonstrates superior performance in deformable image registration,proving its potential in medical image analysis.It effectively enhances the accuracy and efficiency of registration,providing strong support for subsequent medical research and applications.

Deformable image registrationMambaFeature pyramidMulti-scale fusion

付麟杰、朱遥遥、姚宇

展开 >

中国科学院成都计算机应用研究所(成都 610213)

中国科学院大学(北京 100049)

可变形图像配准 Mamba 特征金字塔 多尺度融合

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)