首页|基于改进密集全卷积神经网络的脑出血图像重建方法研究

基于改进密集全卷积神经网络的脑出血图像重建方法研究

扫码查看
脑出血是一种高发病率和高死亡率的严重脑血管疾病,及时诊断和治疗至关重要.电阻抗断层成像(EIT)作为一种功能性成像技术,能够在脑部组织发病初期检测电学特性的异常变化.然而,由于颅脑EIT图像重建涉及不规则多层结构且各层导电特性存在差异,导致成像质量不高.针对这一问题,本文提出了一种基于改进密集全卷积神经网络的脑出血图像重建方法.在构建逼近人体头部真实结构的三层颅脑模型基础上,本文通过网络训练确定边界电压与电导率变化的非线性映射,避免了传统灵敏度矩阵法逆问题求解引起的误差,并在无噪、有噪及颅脑模型变化情况下对所提方法进行了评估.数值仿真和物理实验结果表明,本文所提方法能准确重建颅内脑出血电导率分布,从而可为脑出血诊断和治疗提供可靠依据,有助于推动电阻抗成像在脑部疾病诊断方面的应用.
Image reconstruction for cerebral hemorrhage based on improved densely-connected fully convolutional neural network
Cerebral hemorrhage is a serious cerebrovascular disease with high morbidity and high mortality,for which timely diagnosis and treatment are crucial.Electrical impedance tomography(EIT)is a functional imaging technique which is able to detect abnormal changes of electrical property of the brain tissue at the early stage of the disease.However,irregular multi-layer structure and different conductivity properties of each layer affect image reconstruction of the brain EIT,resulting in low reconstruction quality.To solve this problem,an image reconstruction method based on an improved densely-connected fully convolutional neural network is proposed in this paper.On the basis of constructing a three-layer cerebral model that approximates the real structure of the human head,the nonlinear mapping between the boundary voltage and the conductivity change is determined by network training,which avoids the error caused by the traditional sensitivity matrix method used for solving inverse problem.The proposed method is also evaluated under the conditions with or without noise,as well as with brain model change.The numerical simulation and phantom experimental results show that conductivity distribution of cerebral hemorrhage can be accurately reconstructed with the proposed method,providing a reliable basis for the diagnosis and treatment of cerebral hemorrhage.Also,it promotes the application of EIT in the diagnosis of brain diseases.

Electrical impedance tomographyCerebral hemorrhageImage reconstructionNeural network

施艳艳、王娈珺、李亚婷、王萌、杨滨、付峰

展开 >

河南师范大学电子与电气工程学院(河南新乡 453000)

中国人民解放军第四军医大学生物医学工程系(西安 710032)

电阻抗成像 脑出血 图像重建 神经网络

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)