首页|基于轻量化网络与知识蒸馏策略的心脏核磁共振图像分割

基于轻量化网络与知识蒸馏策略的心脏核磁共振图像分割

扫码查看
针对深度学习网络应用于心脏核磁共振成像(MRI)图像分割时网络参数量以及浮点运算量较大的问题,本文提出一种轻量化的空洞并行卷积网络(DPU-Net)以减少网络参数的数量以及浮点运算数,进而通过多尺度自适应向量引导的知识蒸馏(MAVKD)训练策略用于提取教师网络的暗知识,以提高DPU-Net的分割精度.本文所提网络采用独特的卷积通道变化方式来减少参数量,并搭配残差块以及空洞卷积缓解因参数减少可能导致的梯度爆炸问题和空间信息丢失问题.研究结果显示,该网络在减少参数量以及提高浮点运算效率方面获得大幅提升,并且将该网络应用于自动心脏诊断挑战赛(ACDC)公共数据集,所得骰子(dice)系数达到91.26%.该研究结果证实了本文所提出的轻量化网络以及知识蒸馏策略的有效性,为深度学习在医学图像分割领域提供了可靠的网络轻量化思路.
Cardiac magnetic resonance image segmentation based on lightweight network and knowledge distillation strategy
To address the issue of a large number of network parameters and substantial floating-point operations in deep learning networks applied to image segmentation for cardiac magnetic resonance imaging(MRI),this paper proposes a lightweight dilated parallel convolution U-Net(DPU-Net)to decrease the quantity of network parameters and the number of floating-point operations.Additionally,a multi-scale adaptation vector knowledge distillation(MAVKD)training strategy is employed to extract latent knowledge from the teacher network,thereby enhancing the segmentation accuracy of DPU-Net.The proposed network adopts a distinctive way of convolutional channel variation to reduce the number of parameters and combines with residual blocks and dilated convolutions to alleviate the gradient explosion problem and spatial information loss that might be caused by the reduction of parameters.The research findings indicate that this network has achieved considerable improvements in reducing the number of parameters and enhancing the efficiency of floating-point operations.When applying this network to the public dataset of the automatic cardiac diagnosis challenge(ACDC),the dice coefficient reaches 91.26%.The research results validate the effectiveness of the proposed lightweight network and knowledge distillation strategy,providing a reliable lightweighting idea for deep learning in the field of medical image segmentation.

Deep learningMedical image segmentationKnowledge distillationLightweight network

刘泽奇、王宁、张冲、魏国辉

展开 >

山东中医药大学智能与信息工程学院(济南 250355)

深度学习 医学图像分割 知识蒸馏 轻量化网络

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)