首页|深度学习结合放射组学特征的肾结石种类识别

深度学习结合放射组学特征的肾结石种类识别

扫码查看
目前,术前肾结石的种类主要依靠人工进行识别,这种依赖人工知识的方式将直接导致分类准确率不高以及诊断结果不统一的问题.对此,本文提出了一种基于放射组学与深度学习相结合的肾结石种类识别框架,以期在高准确率的基础上实现自动化的术前肾结石种类识别.首先,该框架使用放射组学方法提取三维(3D)卷积神经网络浅层输出的放射组学特征,并将提取的放射组学特征与卷积神经网络中的深层特征相融合.然后,将融合特征经过正则化以及最小绝对值收敛和选择算子(LASSO)处理.最后,利用轻量级梯度提升机(LightGBM)进行感染性和非感染性肾结石的识别.实验结果表明,本文提出框架的术前肾结石种类识别准确率达到了 84.5%.该框架可以有效地识别出感染性肾结石与非感染性肾结石,并为术前肾结石治疗方案的制定和术后患者的康复提供有效帮助.
Identification of kidney stone types by deep learning integrated with radiomics features
Currently,the types of kidney stones before surgery are mainly identified by human beings,which directly leads to the problems of low classification accuracy and inconsistent diagnostic results due to the reliance on human knowledge.To address this issue,this paper proposes a framework for identifying types of kidney stones based on the combination of radiomics and deep learning,aiming to achieve automated preoperative classification of kidney stones with high accuracy.Firstly,radiomics methods are employed to extract radiomics features released from the shallow layers of a three-dimensional(3D)convolutional neural network,which are then fused with the deep features of the convolutional neural network.Subsequently,the fused features are subjected to regularization,least absolute shrinkage and selection operator(LASSO)processing.Finally,a light gradient boosting machine(LightGBM)is utilized for the identification of infectious and non-infectious kidney stones.The experimental results indicate that the proposed framework achieves an accuracy rate of 84.5%for preoperative identification of kidney stone types.This framework can effectively distinguish between infectious and non-infectious kidney stones,providing valuable assistance in the formulation of preoperative treatment plans and the rehabilitation of patients after surgery.

Image classificationInfectious kidney stonesDeep learningMachine learningRadiomics

孙超、倪军、刘建和、李华锋、陶大鹏

展开 >

云南大学信息学院(昆明 650500)

昆明医科大学第二附属医院泌尿外科(昆明 650500)

昆明理工大学信息工程与自动化学院(昆明 650500)

影像分类 感染性肾结石 深度学习 机器学习 放射组学

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)