首页|基于反向传播神经网络和灰狼优化算法的离心式人工心脏泵叶片参数优化

基于反向传播神经网络和灰狼优化算法的离心式人工心脏泵叶片参数优化

扫码查看
叶轮作为人工心脏泵的主要部件,高速旋转引起的高剪切应力可能导致溶血.为改善人工心脏泵的溶血性能,获取最优的叶片参数组合,对现有的人工心脏泵叶片进行优化设计.选取叶片数、叶片出口角度及叶片厚度作为设计变量,泵内剪切应力最大值为优化目标,通过已有的模拟数据建立反向传播(BP)神经网络预测模型,利用灰狼优化算法对叶片参数进行寻优.结果表明:优化后的叶片参数为叶轮数7个、出口角度25 °、叶片厚度1.2 mm,剪切应力最大值377 Pa,相较于原始模型降低了 16%.经过模拟分析,优化结果相较于原始模型,叶片外缘、根部和底部等区域的高剪切应力区域明显减少,溶血性能得到显著改善.本文所使用的耦合算法降低了建模仿真的工作量,并且显著提升了优化目标的性能,相较于传统优化算法更具优势,为研究离心式人工心脏泵参数优化问题提供了新思路.
Optimization of centrifugal artificial heart pump blade parameters based on back propagation neural network and grey wolf optimization algorithm
The impeller,as a key component of artificial heart pumps,experiences high shear stress due to its rapid rotation,which may lead to hemolysis.To enhance the hemolytic performance of artificial heart pumps and identify the optimal combination of blade parameters,an optimization design for existing pump blades is conducted.The number of blades,outlet angle,and blade thickness were selected as design variables,with the maximum shear stress within the pump serving as the optimization objective.A back propagation(BP)neural network prediction model was established using existing simulation data,and a grey wolf optimization algorithm was employed to optimize the blade parameters.The results indicated that the optimized blade parameters consisted of 7 impeller blades,an outlet angle of 25 °,and a blade thickness of 1.2 mm;this configuration achieved a maximum shear stress value of 377 Pa-representing a reduction of 16%compared to the original model.Simulation analysis revealed that in comparison to the original model,regions with high shear stress at locations such as the outer edge,root,and base significantly decreased following optimization efforts,thus leading to marked improvements in hemolytic performance.The coupling algorithm employed in this study has significantly reduced the workload associated with modeling and simulation,while also enhancing the performance of optimization objectives.Compared to traditional optimization algorithms,it demonstrates distinct advantages,thereby providing a novel approach for investigating parameter optimization issues related to centrifugal artificial heart pumps.

Artificial heart pumpBlade parametersBack propagation neural networkGrey wolf optimization algorithmHemolytic properties

穆璐璐、段欢欢、肖媛、崔国民

展开 >

上海理工大学能源与动力工程学院上海市动力工程多相流动与传热重点实验室(上海 200093)

河南牧业经济学院能源与智能工程学院(郑州 450000)

人工心脏泵 叶片参数 反向传播神经网络 灰狼优化算法 溶血性能

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)