首页|基于深度学习的胃肿瘤内窥镜图像诊断研究进展

基于深度学习的胃肿瘤内窥镜图像诊断研究进展

扫码查看
胃肿瘤是发生在胃部的肿瘤病变,对人体健康构成重大威胁.胃癌是胃肿瘤的恶性形态,早发现早治疗对于患者康复具有重要意义.内窥镜检查是胃肿瘤诊断的主要方式,深度学习方法能自动提取内窥镜图像的特征并进行分析,有效提高了胃癌的检出概率,已成为辅助诊断的重要工具.本文梳理了近几年的相关文献,介绍了深度学习方法在胃肿瘤内窥镜图像分类、目标检测和分割方面的应用.此外,本文还总结了几种胃肿瘤相关的计算机辅助诊断(CAD)系统和多模态算法,并指出当前已有的深度学习方法存在的问题,以及对未来发展方向进行了展望,以期促进深度学习方法在胃肿瘤内窥镜图像临床诊断中的应用.
Research progress on endoscopic image diagnosis of gastric tumors based on deep learning
Gastric tumors are neoplastic lesions that occur in the stomach,posing a great threat to human health.Gastric cancer represents the malignant form of gastric tumors,and early detection and treatment are crucial for patient recovery.Endoscopic examination is the primary method for diagnosing gastric tumors.Deep learning techniques can automatically extract features from endoscopic images and analyze them,significantly improving the detection rate of gastric cancer and serving as an important tool for auxiliary diagnosis.This paper reviews relevant literature in recent years,presenting the application of deep learning methods in the classification,object detection,and segmentation of gastric tumor endoscopic images.In addition,this paper also summarizes several computer-aided diagnosis(CAD)systems and multimodal algorithms related to gastric tumors,highlights the issues with current deep learning methods,and provides an outlook on future research directions,aiming to promote the clinical application of deep learning methods in the endoscopic diagnosis of gastric tumors.

Deep learningGastric tumorsGastric cancerEndoscopic images

高原、魏国辉

展开 >

山东中医药大学智能与信息工程学院(济南 250355)

深度学习 胃肿瘤 胃癌 内窥镜图像

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(6)