首页|基于生物信息学的HPV致宫颈癌关键基因及功能通路研究

基于生物信息学的HPV致宫颈癌关键基因及功能通路研究

扫码查看
目的 探明人乳头瘤病毒(HPV)致子宫颈癌关键基因及功能通路。方法 基于癌症基因组图谱计划(TCGA)306例宫颈癌患者和高通量基因表达(GEO)数据库数据集41例患者转录组测序数据,通过差异分析筛选差异表达基因(DEG),并使用基因本体论(GO)和京都基因百科全书(KEGG)对DEG进行富集分析。然后使用加权基因共表达网络(WGCNA)进行模块化分析筛选HPV和与肿瘤高度相关性,与DEG取交集后通过生存分析筛选预后因子,通过最小绝对收缩和选择算子(LASSO)构建预后风险模型,然后使用多变量Cox回归分析来筛选独立预后因子。结果 分析GEO数据集GSE67522中10例感染HPV患者和20例宫颈癌患者,共筛选出1 044个DEG,其中上调基因587个,下调基因457个。WGCNA结果表明,蓝色模块与HPV及肿瘤高度相关,通过对DEG和蓝色模块的基因取交集获得了 88个共同基因,生存分析表明共有10个预后相关基因,通过LASSO对这10个预后相关基因构建预后风险模型,单因素和多因素Cox结果表明肌动蛋白结合蛋白基因(ANLN)为HPV致子宫颈癌的独立预后因子。结论 该研究为HPV致子宫颈癌提供了风险模型的预后价值及宫颈癌治疗的新目标。
Bioinformatics-based study of key genes and functional pathways of HPV-induced cervical cancer
Objective To investigate the key genes and functional pathways of HPV-induced cervical cancer.Methods Based on transcriptome sequencing data of 306 patients with cervical cancer from Cancer Genome Atlas(TCGA)and 41 patients from Gene Expression Omnibus(GEO)database,the differentially expressed genes(DEG)were screened by differential analysis,and DEG were enriched and analyzed using Gene Ontology(GO)and Kyoto Encyclopedia of Genes(KEGG).The weighted gene co-expression network(WGCNA)was used for modular analysis to screen HPV and tumor highly correlated.After intersection with DEG,the prognostic factors were screened by survival analysis,the prognostic risk model was constructed by the least absolute shrinkage and selection operator(LASSO),and the multivariate Cox regression analysis was used to screen independent prognostic factors.Results A total of 1 044 DEG were screened out from 10 patients with HPV infection and 20 patients with cervical cancer in GEO dataset GSE67522,which included 587 up-regulated genes and 457 down-regulated genes.The results of WGCNA showed that the blue module was highly correlated with HPV and tumor,and 88 common genes were obtained by inter-section of DEG and blue module genes.The survival analysis results showed that there were 10 prognostic genes,and prognostic risk model was constructed by LASSO for those 10 prognostic genes.The univariate and multivariate Cox results showed that ANLN was an independent prognostic factor for HPV-induced cervical cancer.Conclusion It is demonstrated that the study provides prognostic value of risk model for HPV-induced cervical cancer and novel target for cervical cancer treatment.

bioinformaticshuman papilloma viruscervical cancerprognosisweighted gene co-expression network(WGCNA)

朱丽、余雪姣、周金华

展开 >

苏州市中西医结合医院体检中心,江苏苏州 215101

苏州大学 附属第一医院放射科,江苏 苏州 215101

生物信息学 人乳头瘤病毒 宫颈癌 预后 加权基因共表达网络(WGCNA)

苏州市科技局基金资助项目

SYS2020106

2024

生物医学工程与临床
天津市生物医学工程学会,天津市第三中心医院

生物医学工程与临床

CSTPCD
影响因子:0.462
ISSN:1009-7090
年,卷(期):2024.28(5)