首页|基于集对分析评价模型的城市交通态势判别

基于集对分析评价模型的城市交通态势判别

扫码查看
为提升道路交通态势判别精度,构建了交通态势判别集对分析模型,该模型从交通态势的同一性、差异性、对立性三个维度,构建了路段饱和度、行程时间比、行程速度的六元联系度函数,以及基于梯形模糊数截集的差异度系数取值函数。基于路段检测器数据,分别利用集对分析模型、模糊综合评价模型、行程时间比模型对交通态势进行判别,并将判别结果与《城市交通运行状况评价规范》(GB/T33171-201)中交通特征参数所表征态势等级进行误差分析,结果表明,集对分析模型、模糊综合评价模型、行程时间比模型的MSE误差值分别为0。12、0。17和0。46,证明集对分析法误差更小且抗干扰性更强。
Urban Traffic Situation Discrimination Based on Set Pair Analysis and Evaluation Model
In order to improve the accuracy of road traffic situation discrimination,this paper constructs a traffic situation discriminant set pair analysis model,which constructs the hexadecimal correlation function of road section saturation,travel time ratio and travel speed from the three dimensions of traffic situation identity,difference and opposition,and the dif-ference coefficient value function based on trapezoidal fuzzy number intercept.Based on the road section detector data,the set pair analysis model,fuzzy comprehensive evaluation model and travel time ratio model were used to discriminate the traffic situation,and the discrimi-nant results were analyzed with the situation level characterized by the traffic characteristic parameters in the"Urban Traffic Operation Status Evaluation Specification"(GB/T33171-201),and the results showed that the MSE error values of the set pair analysis model,fuzzy comprehensive evaluation model and travel time ratio model were 0.12,respectively.0.17 and 0.46,proving that the set has a smaller error and stronger immunity to interference.

saturationtravel timesituation discriminationset pair analysiskeystone blur number

温冬、张萌萌、孙庆文

展开 >

山东交通学院交通与物流工程学院,山东 济南 250357

济南市城市交通研究中心有限公司,山东 济南 250000

山东省智慧交通重点实验室(筹),山东 济南 250357

饱和度 行程时间 态势判别 集对分析 梯形模糊数

济南市科学技术局项目全国统计科学研究项目2021年度山东省自然科学基金

2019GXRC0222021LY017ZR202103040503

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(1)
  • 10