首页|视觉传达TwostageNet模型的多特征纹理壁画图像超分辨率重建方法

视觉传达TwostageNet模型的多特征纹理壁画图像超分辨率重建方法

扫码查看
单幅图像壁画的超分辨率在图像恢复方面具有重要价值。然而,对壁画伪影重建效果不理想边缘细节丢失等问题阻碍了这项研究的发展。为了解决这个问题,提出了 TwostageNet超分辨率重建方法;一种采用两阶段从粗到精学习框架的网络,该框架主要针对压缩图像的超分辨率问题进行优化。具体而言,TwostageNet由两个主要子网组成:粗化和精细化网络,其中递归和残差学习分别在这两个网络中使用。通过尺度递归框架来配合重建,该框架可以递归地重新利用针对低尺度因子学习的滤波器更高的系数。这将提高性能,并提高更高因子的参数效率。训练两个网络版本使用不同的损耗配置来增强互补图像质量。提出的网络在质量和数量上都优于最先进的传统方法超分辨率基准测试技术。利用Vid4数据集模拟的低分辨率图像对该方法进行了测试,实验结果表明了该方法的有效性。
Super Resolution Reconstruction Method of Multi Feature Texture Mural Image Based on Twostagenet Model for Visual Communication
The super-resolution of a single image is of great value in image restoration.However,the complex compression artifacts and other problems hinder the development of this research.To solve this problem,we propose twostageNet;A network using a two-stage coarse to fine learning framework,which is mainly optimized for the super-resolution of compressed images.Specifically,TwostageNet consists of two main subnets:coarse and fine networks,in which recursion and residual learning are used respectively.The scale recursion framework is used to cooperate with the reconstruction.The framework can recursively reuse the higher coefficients of the filter for low scale factor learning.This will improve performance and parameter efficiency for higher factors.We trained two of our network versions to use different loss configurations to enhance complementary image quality.The proposed network is superior to the most advanced image and video super-resolution benchmark technology in both quality and quantity.The method is tested with the low resolution images simulated by smic-hs dataset.The experimental results show the effectiveness of the method.

residual learningneural networkreconstruction

蔡娟

展开 >

广州科技职业技术大学信息工程学院,广东 广州 510005

残差学习 神经网络 重建

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(1)
  • 15