首页|基于方差排序和深度神经网络的抗癌药物组合协同作用预测

基于方差排序和深度神经网络的抗癌药物组合协同作用预测

扫码查看
针对特定癌症类型,寻找协同的药物组合对于提高癌症疗效至关重要.基于方差排序和深度神经网络,构建了四类VarDNN模型,利用五折嵌套交叉验证和留一法,全面预测抗癌药物组合协同作用.实验结果显示:VarDNN模型的预测性能不仅优于已有经典模型,而且对于首次探讨的"新细胞系-新旧药物对"的预测结果也与已有结论相吻合.此外,VarDNN能够识别出与癌症发生发展密切相关的生物标志物,为抗癌药物组合筛选提供理论参考.
Prediction of Anti-Cancer Drug Combinations Synergy Based on Variance Ranking and Deep Neural Network
Identifying novel synergistic combinations to a specific cancer is significant for improving cancer treatment.Based on variance ranking and deep neural network,four types of VarDNN models were built,and five-fold nested cross validation and leave-one-out method were employed to predict anti-cancer drug synergy comprehensively.The result shows that the prediction performance of VarDNN is superior to the state-of-the-art models.Most im-portantly,the synergy prediction of"new cell line-new and old drug pair",which has not yet been studied,is consistent with some known conclusions.Furthermore,VarDNN could identify some biomarkers closely related to the occurrence and development of cancers,and provide a theoretical reference for the screening of anti-cancer drug combinations in some extent.

anti-cancer drug combinationvariance rankingdeep neural networksynergy predictionbiomarker

张杉、马敬山、李玉双

展开 >

燕山大学理学院,河北秦皇岛 066004

石家庄邮电职业技术学院,河北 石家庄 050022

抗癌药物组合 方差排序 深度神经网络 协同预测 生物标志物

河北省自然科学基金河北省引进留学人员资助项目

A2020203021C20200365

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(2)
  • 18