首页|基于改进麻雀搜索算法的K-means聚类

基于改进麻雀搜索算法的K-means聚类

扫码查看
针对传统K-means聚类算法依赖初始解、易陷入局部最优等问题,提出了一种基于改进麻雀搜索算法的K-means聚类.首先,将分数阶微积分引入麻雀算法,用 自适应分数阶阶次对麻雀进行位置更新,提高算法的收敛精度;其次,对麻雀种群进行精英反向学习,增强种群多样性,扩大搜索区域范围;然后,对麻雀的位置进行自适应t分布变异,避免算法陷入局部最优;最后,将提出的改进算法在8个基准测试函数中进行性能验证,并应用于K-means聚类.对UCI数据集进行聚类仿真实验,结果表明基于改进麻雀搜索算法的K-means聚类可有效提高聚类质量和算法稳定性.
K-means Clustering Based on Improved Sparrow Search
Aiming at the problems that traditional K-means clustering algorithm relies on the initial solution and is easy to fall into local optima,a K-means clustering based on the improved sparrow search algorithm is proposed.First,introduce the fractional calculus into the sparrow algorithm,and update the position of the sparrow with an adaptive fractional order to improve the convergence accuracy of the algorithm;Secondly,perform elite reverse learning on the sparrow population to enhance the diversity of the population and expand the scope of the search area;Then,adaptive t distribution mutation is performed on the position of the sparrow to avoid the algorithm from falling into the local optimum;Finally,the performance of the proposed improved algorithm is verified in 8 benchmark functions and applied to K-means clustering.The clustering simulation experiment on the UCI data set shows that the K-means clustering based on the improved sparrow search algorithm can effectively improve the clustering quality and algorithm stability.

sparrow algorithmadaptive fractional orderelite reverse learningadaptive t distributionK-means clustering

翁嘉诚、周晓杰、叶蓓蕾、王建宏

展开 >

南通大学理学院,江苏 南通 226019

麻雀算法 自适应分数阶 精英反向学习 自适应t分布 K-means聚类

全国统计科学研究项目南通市科技计划项目

2020LY020MS12021058

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(2)
  • 17