设H为无限维复可分的Hilbert空间,B(H)为H上有界线性算子的全体。若有 σ(T)\σω(T)=Π(T),则称算子 T ∈ B(H)满足(WΠ)性质,其中 σ(T),σw(T),Π(T)分别表示算子T的谱、Weyl谱,以及T的所有极点构成的集合。借助拓扑一致降标性质刻画有界线性算子的(WΠ)性质,并对算子函数的(WΠ)性质以及(WΠ)性质的Riesz摄动进行研究。
Property(WΠ)and the Property of Topological Uniform Descent for Bounded Linear Operators
Let H be an infinite dimensional separable complex Hilbert space and B(H)be the algebra of all bounded linear operators on H.T ∈ B(H)satisfies the property(WΠ)ifσ(T)\ σω(T)=Π(T),where σ(T),σω(T)and Π(T)denote the spectrum,Weyl spectrum and the set of all poles of T respectively.In this note,we describe the characteristic of property(WΠ)using the property of topological uniform descent.In additional,we explored the property(WΠ)of the functions of linear bounded operators and the property(WΠ)under Riesz perturbations.