首页|电商平台用户感知兴趣点智能化动态协同推荐模型

电商平台用户感知兴趣点智能化动态协同推荐模型

扫码查看
为提升用户感知兴趣点推荐效果,设计电商平台用户感知兴趣点智能化动态协同推荐模型。结合用户协同过滤推荐结果和兴趣点流行度推荐结果,生成基于用户偏好的兴趣点推荐结果。融合兴趣点地理距离和访问时间信息,生成基于兴趣点情景信息的推荐结果。利用矩阵分解模型,建立用户感知兴趣点智能化协同推荐模型。引入改进混合递阶遗传算法更新模型参数,得到最佳的用户感知兴趣点智能化协同推荐结果。通过用户活跃度分析推荐结果内用户感知兴趣点是否发生漂移,若发生漂移,则利用推荐模型重新计算推荐结果,完成用户感知兴趣点智能化动态协同推荐。实验证明:该模型可有效完成电商平台用户感知兴趣点智能化动态协同推荐;在不同影响因素时,该模型的商品购买转化率均较高,推荐效果较优;应用该模型后,可有效降低电商平台的用户流失率。
Intelligent Dynamic Collaborative Recommendation Model of User Perceived Interest Points on E-Commerce Platform
To improve the effectiveness of user perceived interest point recommendation,design an intelligent dynamic collaborative recommendation model for user perceived interest points on e-commerce platforms.Generate interest point recommendation results based on user preferences by combining user collaborative filtering recommendation results and inter-est point popularity recommendation results.Integrate geographic distance and access time information of interest points to generate recommendation results based on interest point scenario information.Using matrix decomposition model,establish an intelligent collabo-rative recommendation model for user perceived interest points.Introducing an improved hybrid hierarchical genetic algorithm to update model parameters and obtaining the best intelligent collaborative recommendation results for user perceived interest points.By an-alyzing user activity,it is possible to determine if there is a drift in the perceived interest points within the recommendation results.If there is a drift,a recommendation model is used to recalculate the recommendation results and achieve intelligent dynamic collaborative recommendation based on user perceived interest points.Experimental results have shown that this model can effectively achieve intelligent dynamic collaborative recommendation of perceived interest points for e-commerce platform users;Under different influencing factors,the product purchase conversion rate of this model is relatively high,and the recommenda-tion effect is better;After applying this model,it can effectively reduce the user churn rate of e-commerce platforms.

e-commerce platformuser perceptionpoints of interestintelligencedynamic collaborative recommendationmatrix decomposition

陈华

展开 >

昆明冶金高等专科学校商学院,云南 昆明 650033

电商平台 用户感知 兴趣点 智能化 动态协同推荐 矩阵分解

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(3)
  • 1
  • 15