首页|加权分数阶离散Verhulst模型及其应用

加权分数阶离散Verhulst模型及其应用

扫码查看
为了提高传统Verhulst模型的拟合和预测精度,文章根据新信息优先原理,采用加权累加和加权累减的信息处理方式,建立基于加权分数阶累加生成的离散Verhulst模型。采用河北省的年末人口数进行预测,将新建模型与传统Verhulst模型和分数阶离散Verhulst模型进行比较。结果显示,加权分数阶离散Verhulst模型具有较高的精度和较强的稳定性,具有一定的实用价值。
Weighted Fractional Discrete Verhulst Model and Its Application
In order to improve the fitting and prediction accuracy of the traditional Verhulst model,the article adopts the information processing method of weighted accumulation and weighted reducing according to the new information priority principle,and establishes a discrete Verhulst model based on weighted fractional accumulation.The population at the end of the year in Hebei Province is adopted.Make predictions and compare the new model with the traditional Verhulst model and the fractional discrete Verhulst model.The results show that the weighted fractional discrete Verhulst model has high accuracy and strong stability,and has certain practical value.

weighted accumulationfractional orderdiscrete Verhulst modelpopulation forecast

石莹莹、朱锋、周陈裕、王建宏

展开 >

南通大学数学与统计学院,江苏 南通 226019

加权累加 分数阶 离散Verhulst模型 人口预测

全国统计科学研究项目南通市科技计划项目

2020LY020MS12021058

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(3)
  • 18