首页|分数阶时滞SEIR传染病模型的动力学分析

分数阶时滞SEIR传染病模型的动力学分析

扫码查看
针对具有logistic增长和非线性发生率的分数阶时滞SEIR传染病模型进行研究.利用第二代再生矩阵法计算出模型的基本再生数R0;当R0<1时,证明无病平衡点是局部渐近稳定的;当R0>1时,证明时滞情况下地方病平衡点是局部渐近稳定的;选取时滞作为分岔参数,证明地方病平衡点发生Hopf分岔的条件;最后,运用数值模拟验证理论结果的正确性.
Dynamics Analysis of SEIR Epidemic Model with Fractional Order Time-Delay
In this paper,we investigate the fractional order time-delay SEIR epidemic model with logistic growth and nonlinear incidence.Using the second generation regeneration matrix method,we calculate the basic reproduction number Ro of the model.The result indicates that the disease-free equilibrium point possesses the locally asymptotically stability When R0<1,the sufficient conditions for the existence of backware bifurcation are proved by the center manifold theorem;and the endemic equilibrium point with time delay τ=0 possesses the local asymptotic stability when R0>1.Taking the time delay as a bifurcation parameter,The condition of Hopf bifurcation in endemic equilibrium point is proved by using the bifurcation theory,Finally,the correctness of theoretical analysis is verified by numerical simulations.

Hopf bifurcationstabilityfractional orderdelay

豆中丽

展开 >

重庆财经学院软件学院,重庆 401320

Hopf分岔 稳定性 分数阶 时滞

国家自然科学基金重庆市教委科技创新项目

11304403KJQN201902105

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(4)
  • 15