首页|流体力学拓扑优化问题的BESO方法

流体力学拓扑优化问题的BESO方法

扫码查看
将双向渐进结构优化(BESO)方法应用于求解流体力学拓扑优化问题。控制方程是Navier-Stokes方程,拓扑优化的目的是寻找流体流动的最佳路径,在给定流体体积数约束下使总耗散达到最小。将人工渗透项添加到Navier-Stokes方程中,用来应用无滑移边界条件;用共轭方法得到灵敏度分析结果,并与BESO方法相结合。最后用经典算例验证了 BESO方法处理流体力学拓扑优化问题的稳定性和有效性。
BESO Method for Solving Topology Optimization Problems in Fluid Mechanics
The Bi-directional Evolutionary Structural Optimization(BESO)algorithm is applied to solve the topology optimization problem in fluid dynamics.The Navier-Stokes equation is used as the governing equation,and the purpose of topology optimization is to find the optimal path of fluid flow and minimize the total dissipation under the constraint of a given fluid volume.The artificial permeability term is added to the Navier-Stokes equation to apply the no-slip boundary condition;The sensitivity analysis results are obtained by adjoint method and combined with BESO method.Finally,the stability and effectiveness of the proposed method in dealing with fluid dynamics topology optimization are validate by benchmarking examples.

fluid dynamicstopology optimization problemsBESO methodssensitivity analysis

段献葆、魏甜、高伟

展开 >

西安理工大学理学院,陕西 西安 710048

流体力学 拓扑优化问题 BESO方法 灵敏度分析

陕西省重点研发计划国家自然科学基金国家自然科学基金陕西省自然科学基金

2024GX-YBXM-01611971379117015222019JM-284

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(5)
  • 17