首页|不同FCM聚类算法的模糊时间序列预测模型比较

不同FCM聚类算法的模糊时间序列预测模型比较

扫码查看
在模糊时间序列预测模型通常涉及到论域的划分,通常用FCM聚类算法来对论域进行划分,或者用样本点和聚类中心计算出的相似性距离(DTW)来代替传统的欧式距离,即得到DTW-FCM聚类算法来对论域划分。其中基于DTW的FCM聚类算法(DTW-FCM),引入了一个负指数变量,以获得更好的鲁棒性,由此设计出基于DTW改良后的FCM聚类算法(DTW-MFCM)。最后将Alabama大学入学人数预测案例和美国二氧化碳排放总量实列应用到该模型上,将预测结果与其他模糊时间序列预测模型进行比较,结果表明该模型的预测精度和稳定性明显提高,优于其他经典模型。
Comparison of Fuzzy Time Series Prediction Models with Different FCM
In the fuzzy time series prediction model,the universe is usually divided by FCM clustering algorithm,or the traditional Euclidean distance is replaced by the similarity distance(DTW)calculated by sample points and clustering centers,that is,the DTW-FCM clustering algorithm is obtained to divide the universe.Among them,the FCM clustering algorithm based on DTW(DTW-FCM)introduces a negative exponential variable to obtain better robustness,so an improved FCM clustering algorithm based on DTW(DTW-MFCM)is designed.Finally,the prediction case of enrollment in Alabama University and the example of total carbon dioxide emissions in the United States are applied to this model,and the prediction results are compared with other fuzzy time series prediction models.The results show that the prediction accuracy and stability of this model are obviously improved,which is better than other classical models.

fuzzy time seriesrobustnessDTW-MFCM algorithmprediction model

王敏、何腾松、彭鼎

展开 >

贵州师范大学数学科学学院,贵州 贵阳 550025

模糊时间序列 鲁棒性 DTW-MFCM算法 预测模型

国家自然科学基金贵州省科技计划

32260225125200004292035218

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(5)
  • 14