首页|基于数据挖掘的疾病并发症发现方法研究:以2型糖尿病为例

基于数据挖掘的疾病并发症发现方法研究:以2型糖尿病为例

扫码查看
为提高临床复杂疾病并发症诊断和预测的准确性,进而辅助医疗人员及患者科学决策与治疗,以2型糖尿病为例探索了基于关联规则数据挖掘技术的疾病并发症发现方法。研究发现2型糖尿病的18条重要强关联规则,揭示了 2型糖尿病常见并发症的关联方式,其得到了医学专家的临床验证。本文的研究方法对于复杂疾病并发症的发现、疾病关联知识库的构建以及并发症预防和诊疗等都有着重要的参考意义。
Research on Discovery Methods of Diseases Complications Based on Data Mining:Illustrated by the Example of Type 2 Diabetes
In order to diagnose and predict the complications of clinical complex diseases more accurately and assist doctors and patients to make scientific decision and treatment,this paper,taking type 2 diabetes as an example,explores the methods of discovery of disease complications based on data mining technology of association rules.The results show 18 important strong association rules,revealing the link mode of common complications of type 2 diabetes,which has been verified clinically by medical experts.The research methods of this paper have significant reference meaning for the discovery of complex disease complications,the construction of disease association knowledge base,and the prevention and treatment of complications.

data miningassociation rulescomplications

乔岩、郑利涛、李金林

展开 >

郑州大学管理学院,郑州 河南 450001

北京理工大学管理学院,北京 100081

数据挖掘 关联规则 并发症

国家自然科学基金国家自然科学基金中国博士后科学基金面上项目郑州大学教育教学改革研究与实践重点项目

72202217719720122023M7431632023ZZUJGXM028

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(6)
  • 15