首页|一类具有脉冲接种的时滞传染病模型稳定性分析

一类具有脉冲接种的时滞传染病模型稳定性分析

扫码查看
建立了一类具有脉冲接种的时滞传染病模型,利用庞加莱映射不动点定理和离散动力系统理论得到了模型的无病周期解,当(R)0<1时,证明了无病周期解的全局吸引性,同时,满足适当条件且ρ>ρ*或τ<τ*或ω>ω*时,我们得到了疾病将消除,并用数值模拟验证了这一结论。最后分析了疾病的持久性。
Analysis of a Delayed Epidemic Model with Pulse Vaccination
An epidemic model with time delays and pulse vaccination is investigated in this paper.We obtained the infection-free periodic solution of the impulsive epidemic system by using the the discrete dynamical system and the fixed point theory in poincare map.We proved that the globally attractive of the infection-free periodic solution when(R)0<1.Furthermore,we obtained the disease was faded out under appropriate conditions and the vaccination rate was larger than ρ*,or the latent period was larger than>ω*,or the time was less than τ*,the results are illustrated and corroborated with some numerical experiments.The permanence of the model is investigated analytically.

pulse vaccinationinfection-free periodic solutionglobally attractiveperma-nence

王来全、夏米西努尔·阿布都热合曼

展开 >

昌吉职业技术学院基础教育分院,新疆 昌吉 831100

新疆大学数学与系统科学学院,新疆 乌鲁木齐 830046

脉冲接种 无病周期解 全局吸引 持久

新疆维吾尔自治区自然科学基金

2022D01A40

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(7)