首页|非线性方程组的增强型部分强化算法求解与应用

非线性方程组的增强型部分强化算法求解与应用

扫码查看
针对非线性方程组求解存在求解准确度低、求解个数不全、收敛速度慢等问题,提出了 一种融合改进Circle混沌映射、柯西变异以及正切飞行算子的改进部分强化优化算法用于求解方程组。首先初始化种群时加入改进Circle混沌序列,增加种群的复杂性;其次,对当前最优解采用柯西变异扰动策略,提升算法跳出局部最优的概率;最后,在刺激阶段加入正切飞行算子,提高算法在不同时期全局探索和局部开发的需求。通过6个标准测试函数的测试和8组多根非线性方程组的求解,实验结果表明改进算法在鲁棒性,寻优精度和收敛性等方面都优于其他算法。将算法用于工程上的三角函数超越方程求解,也获得好的效果。
Improved Partial Reinforcement Optimization Algorithm for Solving Nonlinear Equations and Application
In view of the problems of low solution accuracy,incomplete number of solutions,and slow convergence speed in solving nonlinear equations,an Improved Partial Reinforcement Optimization Algorithm that integrates improved Circle chaos mapping,Cauchy mutation,and tangent flight operator is proposed for solving equation set.An improved Circle chaos sequence is first added when initializing the population to increase the complexity of the population.A Cauchy mutation perturbation strategy is then used for the current optimal solution to improve the probability of the algorithm jumping out of the local optimum.Finally,a tangent flight operator is added in the stimulation stage to improve the needs of global exploration and local development of algorithms in different periods.Through the testing of 6 standard test functions and the solution of 8 sets of multi-root nonlinear equations,the experimental results show that the improved algorithm is superior to other algorithms in terms of robustness,optimization accuracy and convergence.The algorithm is used to solve trigonometric transcendental equations in engineering and also achieves good results.

partial reinforcement optimization algorithmnonlinear equationscircle chaostangent flight operatorCauchy mutation

张伟、莫愿斌

展开 >

广西民族大学人工智能学院,广西 南宁 530006

广西民族大学广西混杂计算与集成电路设计分析重点实验室,广西 南宁 530006

部分强化优化算法 非线性方程组 Circle混沌 正切飞行算子 柯西变异

广西自然科学基金广西民族大学科研项目

2019GXNSFAA18501172021MDKJ004

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(8)