首页|一种求解对称张量Z-特征值的非单调拟牛顿算法

一种求解对称张量Z-特征值的非单调拟牛顿算法

扫码查看
张量特征值问题是近几年热门的研究问题,其中对称张量Z-特征值在数理统计、信号处理等方面有重要应用。根据对称张量Z-特征值问题与非线性方程组的等价转化,利用非单调线搜索,提出一种求解对称张量Z-特征值的拟牛顿算法。该算法不需要计算和储存雅可比矩阵,提高了计算效率。在适当的条件下,证明了算法的全局收敛性,数值实验表明,算法是可行有效的。
A Non-Monotone Quasi-Newton Algorithm for Computing Z-Eigenvalues of Symmetric Tensors
The tensor eigenvalues problem has attracted people's attention in recent years,which has important applications in mathematical statistics and signal processing especially Z-eigenvalues of symmetric tensor.According to the equivalence transformation between Z-eigenvalues of symmetric tensor and nonlinear equations.Using the non-monotone line search,a convergent Quasi-Newton algorithm is proposed for computing Z-eigenvalues of a symmetric tensor.The algorithm does not require the calculation and storage of Jacobian matrices,which can improve the efficiency of computing.During the iteration process,the positive determinism of the Quasi-Newton matrix is guaranteed.Under appropriate conditions,global convergence of the proposed algorithm is established.Numerical experiments are listed to illustrate the efficiency of the proposed method.

symmetric tensorsZ-eigenvaluesnonlinear equationsQuasi-Newton method

段复建、张义、李向利

展开 >

桂林电子科技大学数学与计算科学学院,广西桂林 541004

对称张量 Z-特征值 非线性方程组 拟牛顿方法

国家自然科学基金

11961010

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(8)