首页|具有径向位势的Klein-Gordon-Maxwell系统解的存在性和多重性

具有径向位势的Klein-Gordon-Maxwell系统解的存在性和多重性

扫码查看
研究如下Klein-Gordon-Maxwell系统-Δu+V(|x|)u-(2ω+φ)φu=λQ(|x|)f(u),x ∈ R3,Δφ=(ω+φ)u2,x ∈ R3,其中ω>0是一个常数,λ>0,V,Q是径向函数,其在无穷远处可能是消失的或强制的.当f仅在原点附近满足局部条件时,利用变分方法证明了系统非平凡径向解的存在性和多重性,并得到系统的解关于参数λ的依赖性.完善了此系统解研究的已有结果.
Existence and Multiplicity of Solutions for Klein-Gordon-Maxwell Systems with Radial Potentials
This article concerns the following Klein-Gordon-Maxwell system-Δu+V(|x|)u-(2ω+φ)φu=λQ(|x|)f(u),x ∈ R3,{ Δφ-(ω+φ)u2,x ∈ R3,where w>0 is a constant,λ>0,V,Q are radial functions,which can be vanishing or coercive at infinity.When f satisfies local assumptions just in a neighborhood of the origin,existence and multiplicity of nontrivial radial solutions can be proved via variational methods and the dependence on the parameter λ of the solution to the system can be obtained.Our result completes some recent works concerning research on solutions of this system.

Klein-Gordon-Maxwell systemvariational methodsexistencemultiplicity

孙歆、段誉

展开 >

贵州工程应用技术学院理学院,贵州 毕节 551700

Klein-Gordon-Maxwell系统 变分法 存在性 多重性

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(9)