首页|多项时间混合分数阶扩散波动方程的类Wilson非协调元超收敛分析

多项时间混合分数阶扩散波动方程的类Wilson非协调元超收敛分析

扫码查看
基于时间方向采用混合有限差分近似和空间方向选取类Wilson非协调有限元逼近,对带时-空耦合导数的多项时间混合分数阶扩散波动方程建立了全离散高效数值格式。首先,证明了全离散格式的解在能量模意义下的无条件稳定性。然后,利用该元的相容误差估计在L2模意义下可以达到二阶精度和该元协调部分的高精度结果,并借助于双线性插值算子代替传统有限元分析中不可缺少的Ritz投影及插值后处理技术,导出了全离散格式下的超逼近性和超收敛结果。最后,运用数值实验模拟分析,验证了理论分析的正确性。
Superconvergence Analysis of Quasi-Wilson Nonconforming Finite Element for Multi-Term Time Fractional Mixed Diffusion Wave Equation
Based on the mixed finite difference approximation in time and the quasi-wilson nonconforming finite element approximation in space,a efficient fully discrete numerical scheme is established for the multi-term time fractional mixed diffusion wave equation with time-space coupling derivatives.Firstly,the unconditional stability of the solution of the fully discrete scheme in the energy norm sense is proved.Then,the consistent error estimate that can reach second-order accuracy under L2-norm and the high-accuracy result of the con-forming finite element part be used.By means of bilinear interpolation operator instead of the indispensable Ritz projection in the traditional finite element analysis and interpolation post-processing techniques,the superclose and superconvergence results in the fully discrete scheme are derived.Finally,numerical experiments are used to verify the correctness of the theoretical analysis.

the multi-term time fractional mixed diffusion wave equationthe quasi-wilson nonconforming finite elementfully-discrete schemeunconditional stabilitysuperclose and superconvergence

樊明智、赵艳敏、王芬玲、史艳华、范慧君

展开 >

许昌学院数理学院,河南 许昌 461000

郑州大学数学与统计学院,河南 郑州 450001

多项时间混合分数阶扩散波动方程 类Wilson非协调有限元 全离散格式 无条件稳定 超逼近和超收敛

国家自然科学基金河南省高等学校重点科研项目

1197141622A110022

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(10)