首页|传染病检测样本转运的多物流无人机路径规划

传染病检测样本转运的多物流无人机路径规划

扫码查看
针对传染病检测样本转运的多物流无人机路径规划问题,在刻画了完整的基于无人机的传染病检测样本转运流程的基础上,建立以总成本最小的无人机路径优化模型。针对所建立的模型,设计基于模糊逻辑控制与邻域搜索的遗传算法进行求解。结果表明无人机任务主要根据需求点距离远近及密集程度进行分配,且每架无人机的配送任务均满足约束限制。进一步开展了参数分析,发现最大电池容量和最小剩余电量限制是影响总成本的重要因素,两者的变化会引起传染病检测样本转运所需无人机数量的变化,并导致总成本的大幅变化。研究成果可为解决传染病检测样本转运问题提供新思路,并为相关物流企业的决策提供理论依据。
Path Planning for Distributed Multiple Unmanned Aerial Vehicles in Infectious Disease Testing Sample Transfer
To solve the path planning problem for infectious disease testing sample transfer by distributed multiple unmanned aerial vehicles(UAVs),a UAV path optimization model with minimum total cost is developed based on the complete UAV-based infectious disease testing sample transfer process.The fuzzy logic-controlled neighborhood search genetic algorithm is designed to solve the model.The validity of the model and algorithm is verified through case studies,and the results show that UAV tasks are mainly allocated according to the distance and intensity of demand points,and each task satisfies the constraints.Besides,further parameter analysis is conducted to explore effects of key parameters on results:the maximum battery capacity and the minimum remaining power limit are important factors affecting the total cost,and the change of these two factors will cause the change of the number of UAVs required for infectious disease testing sample transfer,resulting in a significant change of the total cost.The results can provide a new idea for solving the infectious disease testing sample transfer problem,and provide a theoretical basis for the decision making of relevant logistics companies.

infectious disease testing sample transferdronespath optimization modelgenetic algorithm

邱瑞、江键忠、丁宇、陈欣

展开 >

四川大学商学院,四川 成都 610065

南京财经大学管理科学与工程学院,江苏 南京 210023

传染病检测样本转运 无人机 路径优化模型 遗传算法

国家自然科学基金四川省自然科学基金四川大学"从0到1"创新研究项目

719011572023NSFSC10162023CX37

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(10)