首页|球空间中一类新的Willmore型超曲面的Simons型定理

球空间中一类新的Willmore型超曲面的Simons型定理

扫码查看
主旨是在一般维数球面中的闭超曲面上构造一类泛函Tn作为Willmore泛函的推广.我们将证明Tn和原始Willmore泛函具有类似的性质,即Tn是共形不变的,并且当n为偶数时,Tn对应的变分极小闭超曲面同样满足Simons型不等式,这说明Tn-极小闭超曲面具有某种几何刚性.
Simons-Type Inequality on a New Class of Willmore-Type Hypersurfaces in Spheres
In the paper,we define a class of functionals Tn of hypersurfaces in general dimensional spheres as generation of Willmore functionals.We will prove that Tn have similar properties as Willmore functionals,that is to say,Tn are always conformal invariants,when n is even,the Tn-critical closed hypersurfaces also satisfy Simons-type inequalities,which shows that Tn-critical closed hypersurfaces have sort of rigidity in geometry.

conformal geometryconformal invariantsWillmore functionalSimons in-equality

钟景洋、楼文晓

展开 >

福州大学数学与统计学院,福建 福州 350108

共形几何 共形不变量 Willmore泛函 Simons不等式

福建省中青年教师教育科研资助项目

JAT1900018

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(10)