首页|基于深度学习的黄河流域干旱评估研究

基于深度学习的黄河流域干旱评估研究

扫码查看
干早是影响黄河流域农业生产的重要因素之一,干旱评估对干旱的快速识别,制定防灾减灾措施具有重要意义。文章立足黄河流域,采用数据融合思想,利用Copula函数将气象干旱和水文干旱的特征层进行融合,构建干旱融合指数(Droug-ht convergence index,DCI),提出一种能够动态调整惯性权重和学习因子的自适应粒子群优化算法(Adaptive particle swarm optimization,APSO),结合长短期记忆神经网络(Long short-term memory,LSTM)构建 APSO-LSTM 模型,对 DCI 进行预测。结果表明:1)DCI兼具标准化降水指数和标准化径流指数的优点,能够准确刻画干旱开始和持续的时间;2)APSO算法权衡了全局搜索能力和局部收敛能力,使得粒子前期搜索范围更大、后期收敛能力更强,算法性能得到提升;3)利用APSO算法对LSTM模型的迭代次数、批处理、隐含层数和Adam算法的学习率进行优化,与手动调参的LSTM模型相比,APSO-LSTM模型的预测误差更小,MSE平均降低65。6%,R2平均提升12。7%,模型拟合程度更高,具有较好的预测效果。
Research on Drought Assessment in the Yellow River Basin Based on Deep Learning
Drought is a crucial factor influencing agricultural production in the Yellow River Basin.The assessment of drought holds significant importance for promptly identi-fying drought occurrences and formulating disaster prevention and mitigation measures.In this study,centered on the Yellow River Basin,the concept of data fusion is employed.The Copula function is utilized to merge the feature layers of meteorological drought and hy-drological drought,resulting in the creation of the Drought Convergence Index(DCI).An automatic model is proposed that dynamically adjusts the inertia weight and learning factor using the Adaptive Particle Swarm Optimization algorithm(APSO).This model is combined with the Long Short-Term Memory neural network(LSTM)to form the APSO-LSTM model for predicting DCI.The findings indicate that:1)DCI combines the advantages of both the standardized precipitation index and the standardized runoff index,accurately describing the onset and duration of drought;2)The APSO algorithm enhances both global search capability and local convergence ability,improving the accuracy of the early search range of particles.3)By utilizing the APSO algorithm to optimize the number of iterations,batch processing,the number of hidden layers in the LSTM model,and the learning rate of the Adam algorithm,re-sults are comparable to manually adjusted LSTM models.In comparison to the APSO-LSTM model,the prediction error is smaller,with an average reduction of 65.6%in Mean Squared Error(MSE)and an average increase of 12.7%in R2.The model exhibits a higher fit and demonstrates a superior predictive effect.

drought assessmentdata fusiondeep learningparticle swarm optimization algorithmadaptive

李艳玲、王炳禹、李冬锋

展开 >

华北水利水电大学数学与统计学院,河南 郑州 450046

华北水利水电大学信息工程学院,河南 郑州 450046

干旱评估 数据融合 深度学习 粒子群优化算法 自适应

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(12)