首页|基于贝叶斯优化的CNN-LSTM的油田注水管网压力预测

基于贝叶斯优化的CNN-LSTM的油田注水管网压力预测

扫码查看
油田注水系统节点压力预测是油田实际生产过程中节能降耗和优化调度的重要手段。当前节点压力预测通常采用传统的管网平差计算方法。然而,随着注水管网多年的运营,管网内部结垢、穿孔和腐蚀等问题导致管网内径和摩阻系数发生较大变化,管网平差计算结果与实测值之间存在显著差异。为此,提出一种基于贝叶斯优化的长短期记忆网络(Long short-term memory,LSTM)和卷积神经网络(Convolution neural network,CNN)相结合的油田注水管网压力预测模型。首先通过自注意力机制捕捉输入序列中各节点之间的相关性,并结合卷积神经网络获取节点间的空间特征。然后利用LSTM进行序列建模,将CNN和LSTM的输出特征拼接,输入到深度神经网络(Deep neural networks,DNN)以预测管网节点压力。最后采用贝叶斯优化方法对各个子序列预测模型的网络超参数进行优化。实验采用国内某油田注水管网系统的生产数据对所提模型进行验证,并与其他6种模型进行性能对比。实验结果表明,基于贝叶斯优化的CNN-LSTM预测模型在监测节点FWA的RMSE、MAE、R2值分别为0。045、0。035、0。967,明显优于比较模型,具有较好的泛化能力,能够有效提高油田注水管网节点压力预测精度。
Pressure Prediction of Oilfield Water Injection Pipeline Network Based on Bayesian-Optimized CNN-LSTM
Predicting node pressure in oilfield water injection systems is a critical method for energy conservation,consumption reduction,and optimized scheduling in actual oilfield production.Traditional pressure prediction methods typically use pipe network balance calculations.However,due to years of operation,issues such as scaling,perforation,and corrosion inside the pipeline network cause significant changes in the pipeline's internal di-ameter and friction coefficient.This results in substantial discrepancies between balance calculation results and measured values.Therefore,this paper proposes an oilfield water injection network pressure prediction model based on a combination of Bayesian-optimized Long Short-Term Memory(LSTM)networks and Convolutional Neural Networks(CNN).Firstly,the self-attention mechanism captures the correlations between nodes in the input sequence,and CNN is used to obtain spatial features between nodes.Then,LSTM performs sequence modeling,and the output features of CNN and LSTM are concatenated and fed into Deep Neural Networks(DNN)to predict the network node pressure.Finally,the Bayesian optimization method is used to optimize the hyperparameters of each sub-sequence predic-tion model.The proposed model is validated using production data from a domestic oilfield water injection network system and compared with six other models.Experimental results show that the Bayesian-optimized CNN-LSTM prediction model achieves RMSE,MAE,and R2 values of 0.045,0.035,and 0.967 at monitoring node FWA,respectively,significantly out-performing the comparison models.The model demonstrates good generalization ability and can effectively improve the prediction accuracy of node pressure in oilfield water injection networks.

oilfield water injectionpressure predictionlong short-term memory networksCNN-LSTMBayesian optimization

任永良、代岳成、高生亮、杨鹏杰

展开 >

东北石油大学机械科学与工程学院,黑龙江 大庆 163000

油田注水 压力预测 长短期记忆网络 CNN-LSTM 贝叶斯优化

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(12)