首页|色谱方程组的激波解

色谱方程组的激波解

扫码查看
文章研究色谱方程组激波解的形成及适定性。首先,在一定条件下,利用特征分解理论,证明柯西问题解的导数在有限时间内爆破,即激波的形成。其次,利用自相似粘性消失法,证明激波解的存在性,唯一性和稳定性。并且,给出一些有代表性的数值模拟结果。
Shock Wave for the Simplified Chromatography Equations
In this paper,we investigate the formation and the well-posedness of the shock solution for the simplified chromatography equations.Firstly,under certain conditions,we prove that the derivatives of the solution for the Cauchy problem will blow up in finite time by using the method of characteristic decomposition,i.e.,the shock wave occurs.Secondly,we demonstrate the shock wave solution's existence,uniqueness,and stability using the self-similar viscosity vanishing approach.Moreover,some representative numerical simulations are given.

chromatography equationsshock wavecharacteristic decompositionself-similar viscosity vanishing approach

陶然、郭俐辉

展开 >

新疆大学数学与系统科学学院,新疆 乌鲁木齐 830017

色谱方程组 激波 特征分解 自相似粘性消失法

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(12)