首页|具有两种故障状态的M/G/1可修排队系统的适定性

具有两种故障状态的M/G/1可修排队系统的适定性

扫码查看
运用线性算子半群理论主要研究了具有两种故障状态的M/G/1可修排队系统的适定性,文中假定服务台的寿命服从负指数分布,修理时间和服务时间均服从一般连续分布。首先通过对描述该排队系统行为的偏微分方程组进行规范化,并引入排队系统的状态空间、主算子及其定义域。然后,我们将该排队系统方程转化为Banach空间中的抽象的Cauchy问题。最后运用泛函分析中的Hille-Yosida定理、Phillips定理与Fattorini定理,证明了该排队系统存在唯一的、满足概率性质的正时间依赖解。
Well-Posedness of the Repairable M/G/1 Queueing System with Two Kinds of Breakdown States
We study the well-posedness of the repairable M/G/1 queueing system with two kinds of breakdown states by utilizing the linear operator semigroup theory.In this paper,it is assumed that the life termination of the the service station satisfy exponential distributions,the repair times and the vacation time of the repairman satisfy general continuous distribu-tions.By normalizing the system described by differential equations,we convert the system equations into an abstract Cauchy problem in the Banach space through introducing a state space,main operators and their domains.With the help of the Hille-Yosida theorem,Phillips theorem and Fattorini theorem in functional analysis,we prove that the parallel system has a umnique and positive time-dependent solution which satisfies probability condition.

the repairable M/G/1 queueing system with two kinds of breakdown statesdispersive operatorCo-semigroupquasi-compact operatortime-dependent solution

周学良、张庆红

展开 >

新疆财经大学统计与数据科学学院,新疆 乌鲁木齐 830012

新疆工业职业技术学院公共教学部,新疆 乌鲁木齐 830022

具有两种故障状态的M/G/1可修排队系统 Dispersive算子 Co-半群 拟紧算子 时间依赖解

2024

数学的实践与认识
中国科学院数学与系统科学研究院

数学的实践与认识

CSTPCD北大核心
影响因子:0.349
ISSN:1000-0984
年,卷(期):2024.54(12)