首页|基于改进PCA的复杂多阶段过程故障检测

基于改进PCA的复杂多阶段过程故障检测

扫码查看
为解决复杂多阶段过程难以进行有效监控的问题,提出了时空近邻标准化和主成分分析的故障检测方法.TSNS使用从时间到空间上嵌套近邻集的均值和标准差标准化各阶段样本,能够将多阶段数据高斯化为单一阶段的数据,分离故障样本,同时去除前后时刻样本间的时序相关性.TSNS能帮助PCA有效克服动态性、非线性和多阶段特征的影响,显著提高PCA的故障检测率.通过使用青霉素发酵过程设计故障检测实验,将TSNS-PCA与一些经典方法进行比较,发现其具有更高的故障检测率.
Fault Detection of Complex Multi-stage Process Based on Improved PCA
To solve the problem that it is difficult to monitor complex multi-stage processes effectively,the time-space nearest neighborhood standardization and principal component analysis(TSNS-PCA)method is proposed for fault detection.TSNS uses the means and standard deviations of the nested neighbor set from time to space to standardize the samples of each stage.TSNS can Gaussianize the multi-stage data into single-stage data,separate the fault samples,and remove the temporal correlation between sam-ples at previous and subsequent moments in the process data.TSNS helps PCA to overcome the effects of dynamics,non-linearities,and multi-phase features effectively,significantly improving the fault detection rate of PCA.Through the fault detection experiment of the penicillin fermentation process,TSNS-PCA is compared with some classical methods,which proves that it has a higher fault detection rate in complex multi-stage processes.

time-space nearest neighborhood standardizationprincipal component analysisfault detection

冯立伟、郭少锋、吴弋飞、邢宇、李元

展开 >

沈阳化工大学理学院,辽宁沈阳 110142

沈阳化工大学计算机科学与技术学院,辽宁沈阳 110142

沈阳化工大学信息工程学院,辽宁沈阳 110142

时空近邻标准化 主成分分析 故障检测

辽宁省教育厅基础科研项目辽宁省教育厅基础科研项目

LJKMZ20220792LNYJG2022177

2024

山西大同大学学报(自然科学版)
山西大同大学

山西大同大学学报(自然科学版)

影响因子:0.271
ISSN:1674-0874
年,卷(期):2024.40(1)
  • 9