首页|基于注意力的嵌套UNet显著性目标检测网络研究

基于注意力的嵌套UNet显著性目标检测网络研究

扫码查看
显著性目标检测在图像识别中有着广泛应用,是计算机视觉领域热门研究方向。针对其高、低层次特征融合不当易导致信息提取不完整和下采样中池化过程易出现关键特征丢失、噪点特征放大等问题。文中提出一种融入注意力的嵌套式UNet网络——(AU)2Net网络模型。该方法在RSU模块中引入注意力机制,形成Attention-RSU块,在保证丰富特征信息提取的基础上,关注显著区域,忽略无关信息,抑制噪声的影响。对比其他9种先进算法在5种不同数据集上的最大F-measure和MAE后,显示在多数指标上优于其他算法。验证了模型在复杂场景下能较好地捕捉目标信息,较完整地勾勒出目标的具体细节。
Research on Salient Object Detection Based on Attention Nested UNet
Salient object detection has wide applications in image recognition and is a popular area of research in computer vi-sion.Improper fusion of high-level and low-level features can lead to incomplete information extraction;during the downsampling process,the pooling process is prone to issues such as key feature loss and noise feature amplification.This article proposes a nested UNet network incorporating attention mechanism—(AU)2 Net.This method introduces an attention mechanism in the RSU module and constructs an attention mechanism Attention RSU block to ensure that on the basis of rich feature information extraction,it fo-cuses on salient regions,ignores irrelevant information,and suppresses the influence of noise.After comparing the maximum F-mea-sure and MAE of 9 other advanced algorithms on 5 different datasets,it is shown that they outperform other algorithms in most indi-cators.The method proposed in this article can effectively capture target information in complex scenarios and outline the specific details of the target in a more complete manner.

attention mechanismdeep learningsalient object detectionatrous convolution

储兵、徐争元、徐晓燕、胡慧娴、张云

展开 >

皖南医学院医学影像学院,安徽芜湖 241002

注意力机制 深度学习 显著性检测 膨胀卷积

安徽省教育厅专业服务安徽省十大新兴产业项目皖南医学院中青年科研基金

2022SDXX031WK2023ZQNZ03

2024

山西大同大学学报(自然科学版)
山西大同大学

山西大同大学学报(自然科学版)

影响因子:0.271
ISSN:1674-0874
年,卷(期):2024.40(2)
  • 19