首页|基于熵权法和BP神经网络的煤矿应急管理能力评价

基于熵权法和BP神经网络的煤矿应急管理能力评价

扫码查看
目的 为了进一步提高煤炭开采的安全应急管理能力。方法 首先,查阅相关文献,并在此基础上征求专家的意见,构建了包括应急管理能力的预防、应急管理能力的救援能力、应急管理的保障、应急管理能力的恢复共4个一级指标和16个二级指标的评价指标体系;其次,通过熵权法确定各级指标权重,并结合BP神经网络建立了煤矿应急管理能力综合评价模型;最后,以山西某煤矿为背景对构建的模型进行了实例运用。结果事故的风险评估与预警、救援队伍的救援水平、应急部门与场所的建设、事故发生后的恢复计划、事故的损失与评估等五个因素对煤矿应急管理能力影响较大,计算得出山西某煤矿的应急管理能力结果为"良"。结论安全应急管理能力评价结果为"良",评价结果与实际应急管理能力水平相符,为山西某煤矿进行安全评价工作提供了理论依据。
Evaluation of Coal Mine Emergency Management Ability Based on Entropy Weight Method and BP Neural Network
Objective To further improve the safety emergency management ability of coal mining.Method The evaluation in-dex system,which includes 4 first-level indexes and 16 second-level indexes,including prevention,rescue,guarantee and recovery of emergency management ability,was constructed by consulting relevant literature and soliciting the opinions of experts.Secondly,entropy weight method is used to determine the weights of all levels of indicators,and BP neural network is combined to establish a comprehensive evaluation model of coal mine emergency management ability.Finally,the model is applied to a coal mine in Shanxi Province.Result The risk assessment and early warning of the accident,the rescue level of the rescue team,the construction of the emergency department and the site,the recovery plan after the accident,the loss and assessment of the accident,five factors have a great impact on the emergency management ability of a coal mine in Shanxi Province.Conclusion The evaluation result of safety emergency management ability is"good",which is consistent with the actual level of emergency management ability,and provides a theoretical basis for safety evaluation of a coal mine in Shanxi.

entropy weight methodBP neural networkcoal mine safety emergency management abilitycomprehensive eval-uation

左晨、汪伟、祁云、崔欣超

展开 >

山西大同大学煤炭工程学院,山西大同 037000

辽宁工程技术大学安全科学与工程学院,辽宁阜新 123000

熵权法 BP神经网络 煤矿安全应急管理能力 综合评价

山西大同大学研究生科研创新类项目

23CX47

2024

山西大同大学学报(自然科学版)
山西大同大学

山西大同大学学报(自然科学版)

影响因子:0.271
ISSN:1674-0874
年,卷(期):2024.40(2)
  • 12