首页|基于输入空间转换的多模态情感分析

基于输入空间转换的多模态情感分析

扫码查看
目的处理多模态数据的异构性,有效地融合不同模态的数据进行情感分析。方法提出了一种基于输入空间转换的多模态情感分析模型,将图片和文本进行模态的对齐。对于图片模态,通过输入空间转换模块,利用自回归的方式生成对应描述图片的文本。对于文本模态,将原文和生成的文本相结合,为语言模型提供丰富的文本量。利用BERT语言模型构造动态词向量,然后利用Bi-GRU获取上下文的重要语义特征,最后通过SoftMax进行情感的分类。结果在两个多模态Twitter数据集上超过了基准模型的性能。结论该模型能够有效地处理多模态数据。
Multimodal Sentiment Analysis Based on Input Space Transformation
Objective To deal with the heterogeneity of multimodal data,and effectively fuse data with different modalities for sentiment analysis.Methods We have introduced a multimodal sentiment analysis model based on input space transformation,aim-ing to align the modalities of images and text.For the image modality,we employed an input space transformation module that gen-erates textual descriptions of the corresponding images in an autoregressive manner.In the case of the text modality,we combined the original text with the generated text,providing a rich textual dataset for the language model.We used the BERT language model to construct dynamic word embeddings and then employed Bi-GRU to capture essential semantic features in the context.Finally,we employed SoftMax for sentiment classification.Results We have surpassed the performance of baseline models on two multimodal Twitter datasets.Conclusion The model can effectively process multimodal data.

multimodal sentiment analysisinput space transformationmodality fusionBERT

蔡田、张吴波

展开 >

湖北汽车工业学院电气与信息工程学院,湖北十堰 442002

多模态情感分析 输入空间转换 模态融合 Bert

2024

山西大同大学学报(自然科学版)
山西大同大学

山西大同大学学报(自然科学版)

影响因子:0.271
ISSN:1674-0874
年,卷(期):2024.40(3)