首页|无人机航拍影像的矿区泥石流物源目标检测——以大同市里道寺窑沟为例

无人机航拍影像的矿区泥石流物源目标检测——以大同市里道寺窑沟为例

扫码查看
为解决当前传统泥石流物源识别人工野外实地调查难度大、危险性高、效率低、检测精度低等问题,提出了一种改进的YOLOv5s-GCE泥石流物源目标检测方法。首先,利用Ghost卷积替换普通卷积,完成轻量化特征提取,降低参数量和计算量;其次,在YOLOv5s模型的主干网络中添加CBAM双通道注意力机制,关注关键区域的重要特征,有效提升模型性能;最后,将CIOU替换为EIOU损失函数,提升算法检测精度。与YOLOv5s模型相比,YOLOv5s-GCE模型mAP@0。5提升8。6%,mAP@0。5:0。95提升10。5%,参数量减少10。6%,计算量下降10。1%。可以有效检测泥石流物源,为泥石流物源的精确识别定位提供理论参考和数据支撑,进一步服务于里道寺窑沟区泥石流的风险评价与防治。
Target Detection of Debris Flow Source in Mining Area Using UAV Aerial Images:A Case Study of Lidao Siyaogou,Datong
In order to solve the problems of difficulty,high risk,low efficiency and low detection accuracy of traditional debris flow source identification in artificial field investigation,an improved YOLOv5s-GCE debris flow source target detection method has been proposed.Firstly,Ghost convolution is used to replace common convolution to complete lightweight feature extraction and reduce the number of parameters and computation;Secondly,CBAM dual channel attention mechanism was added to the backbone network of YOLOv5s model to pay attention to important features of key regions and effectively improve model performance;Final-ly,CIOU is replaced by EIOU loss function to improve the detection accuracy of the algorithm.Compared with YOLOv5s model,mAP@0.5 increased by 8.6%,mAP@0.5:0.95 increased by 10.5%,parameter number decreased by 10.6%,and computation amount decreased by 10.1%.It can effectively detect debris flow sources,provide theoretical reference and data support for the accurate identification and positioning of debris flow sources,and further serve the risk assessment and prevention of debris flow in Lidaosi Yaogou area.

attention mechanismdebris flow sourcesobject detectiondeep learningGhost convolutionloss function

燕倩如、张磊、叶军建、李熙尉、王佳源

展开 >

山西大同大学煤炭工程学院,山西大同 037000

注意力机制 泥石流物源 目标检测 深度学习 Ghost卷积 损失函数

山西省研究生实践创新项目(2023)山西大同大学研究生科研创新项目(2023)山西大同大学研究生科研创新项目(2023)

2023SJ29123CX0823CX44

2024

山西大同大学学报(自然科学版)
山西大同大学

山西大同大学学报(自然科学版)

影响因子:0.271
ISSN:1674-0874
年,卷(期):2024.40(3)