首页|基于改进UNet模型和迁移学习的织物缺陷检测

基于改进UNet模型和迁移学习的织物缺陷检测

扫码查看
为了解决传统织物缺陷检测方法存在的算法设计复杂、检测速度慢、模型体积大等问题,提出一种基于改进UNet模型和迁移学习的织物缺陷检测方法,用改进的UNet模型为框架设计织物缺陷检测模型,通过减小双卷积模块的通道数来显著降低深度模型的体积和计算量,通过采用迁移学习策略和可变学习率来提高模型的收敛速度和检测能力。实验结果表明,提出的织物缺陷检测方法具有良好的织物缺陷检测性能,并且具有检测速度快、模型体积小、不需要大规模训练样本等优点。有效解决了传统方法存在的不足,方便在现实的工业场景中部署和应用。
Fabric Defect Detection Based on Improved UNet Model and Transfer Learning
To solve the problems of complex algorithm design,low detection speed and large model size in traditional fabric de-fect detection methods,we propose a fabric defect detection method based on improved UNet model and transfer learning,which uti-lizes the improved UNet model as the framework to construct the fabric defect detection model.The model size and computational complexity are significantly reduced by reducing the number of channels in the dual convolution module of the UNet model.Mean-while,the convergence speed and detection ability of the model are enhanced by adopting transfer learning strategy and variable learning rates.The experimental results show that the proposed method achieves good performance in fabric defect detection tasks.Moreover,the proposed method has the advantages such as high detection speed,small model size,and no need for large-scale train-ing samples.The proposed method effectively addresses the problems of traditional methods and facilitates deployment and applica-tion in real-world industrial scenarios.

fabric defect detectionUNet modelimage segmentationdeep learning

王军敏、林辉

展开 >

平顶山学院信息工程学院,河南 平顶山 467000

织物缺陷检测 UNet模型 图像分割 深度学习

2024

山西大同大学学报(自然科学版)
山西大同大学

山西大同大学学报(自然科学版)

影响因子:0.271
ISSN:1674-0874
年,卷(期):2024.40(6)