首页|对偶四元数和四元分裂四元数的代数性质

对偶四元数和四元分裂四元数的代数性质

扫码查看
对偶四元数和分裂四元数是处理刚体螺旋运动及姿态控制的有力工具。利用Clifford对偶数概念并借助4×4基元复矩阵,给出了矩阵形式的对偶四元数和分裂四元数的定义,获得对偶四元数矩阵和分裂四元数矩阵的伴随矩阵、逆矩阵、行列式等代数性质,同时指出了它们在内积的定义、共轭与范数表达式、乘积的行列式运算等方面的重要差异性。
Algebraic Properties on Dual Quaternion and Quaternion Split Quaternion
Dual quaternion and split quaternion are powerful tools to deal with rigid body spiral motion and attitude control.By using Clifford's concept of dual numbers and with the help of 4×4 primitive complex matrix,the definitions of dual quaternion and split quaternion in matrix form are given,and the algebraic properties such as adjoint matrix,inverse matrix,determinant of dual quaterni-on matrix and split quaternion matrix are obtained.At the same time,their important differences in the definition of inner product,expressions of conjugation and norm,and determinant operations of product are pointed out.

quaterniondual quaternionquaternion split quaternionalgebraic property

邓勇

展开 >

喀什大学 数学与统计学院,新疆 喀什 844006

四元数 对偶四元数 四元分裂四元数 代数性质

国家自然科学基金

11201411

2024

山西大学学报(自然科学版)
山西大学

山西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.287
ISSN:0253-2395
年,卷(期):2024.47(2)
  • 18