首页|基于特征去噪的密集人群定位方法

基于特征去噪的密集人群定位方法

扫码查看
密集人群定位分析的难点之一是获取图像中个体目标的准确预测.密集人群场景条件下,前景图像小目标物体和其他物体存在相互遮挡和干扰等造成的特征噪声.采用传统人群定位方法学习得到的人头特征容易遭受特征噪声的影响,进而容易造成人头特征判别性弱和边界信息获取不准确.针对上述问题,文章提出一种特征去噪方法用于人群定位,其利用语义特征解耦的思想抑制特征噪声以增强独立人头的检测.不同于旨在改善图像视觉质量的传统像素域去噪方法,所提方法将在特征空间对多尺度特征进行去噪,促使模型学习到更多目标类特征,并抑制干扰特征.通过前景目标特征与背景特征的语义解耦,分别增强和减弱头部特征和背景特征响应,有利于改善独立个体目标的检测.实验结果表明,所提出的方法在密集人群数据集Shanghai Tech、UCF-QNRF和NW-PU-Crowd上的平均F1值分别为81.2%,72.4%和77.1%,提高了密集人群定位的性能.
Dense Crowd Localization Method Based on Feature Denoising
The difficulty of dense crowd location analysis is to obtain accurate prediction of individual targets in the image.In dense crowd scenes,small target objects and other objects in the foreground image have characteristic noises caused by mutual occlusion and interference.The human head features learned by traditional crowd location methods are easily affected by feature noise,which may lead to weak discrimination of human head features and inaccurate boundary information acquisition.To solve the above prob-lems,a class aware feature denoising method is proposed for crowd location,which uses the idea of semantic feature decoupling to suppress feature noise and thus to enhance the detection of independent heads.Different from the traditional pixel domain denoising methods aiming at improving image visual quality,the proposed method will denoise multi-scale features in the feature space,pro-mote the model to learn more about target features,and suppress interference features.Through the semantic decoupling of fore-ground target features and background features,the response of head features and background features is enhanced and weakened,re-spectively and the detection performance of independent individual targets can be improved.Experimental results show that the aver-age F1 values of the proposed method on Shanghai Tech,UCF-QNRF and NWPU crowd dense population data sets are 81.2%,72.4%and 77.1%respectively,which shows that it improves the performance of dense population localization.

multi-scalefeature denoisingbackground interference suppressionindependent individual detectionsemantic decou-pling

温超、贺宏强

展开 >

山西大学 大数据科学与产业研究院,山西 太原 030006

山西大学 计算机与信息技术学院,山西 太原 030006

多尺度 特征去噪 背景干扰抑制 独立个体检测 语义解耦

国家自然科学基金山西省留学回国人员科技活动择优资助项目

6210613420220002

2024

山西大学学报(自然科学版)
山西大学

山西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.287
ISSN:0253-2395
年,卷(期):2024.47(2)
  • 33