首页|基于稳定学习的多兴趣序列推荐网络

基于稳定学习的多兴趣序列推荐网络

扫码查看
多兴趣网络以多个表示向量来提取用户多个兴趣,在序列推荐中展现了优秀的表现。然而,用户多个兴趣通常高度相关,模型可能学习到噪声兴趣与目标物品之间的虚假相关性。一旦数据分布变化,兴趣之间的相关性也会改变,虚假相关性将误导模型做出错误预测。为了缓解这个问题,本文提出了一种新的基于稳定学习的多兴趣网络,试图消除模型提取的兴趣之间的相关性,来避免模型捕获虚假相关性。本文采用注意力模块提取多个兴趣,并选择最重要的兴趣进行最终预测。同时,基于独立性准则对训练样本进行加权,以最小化提取到兴趣之间的相关性。本文进行了大量实验显示,在集外(Out-of-Distribution,OOD)和随机设置下,分别取得了36。8%和21。7%的相对提升。
Sequential Recommendation of Multi-Interest Network Based on Stable Learning
Multi-interest models,which extract interests of a user as multiple representation vectors,have shown promising perfor-mances for sequential recommendation.However,considering that multiple interests of a user are usually highly correlated,the mod-el has chance to learn spurious correlations between noisy interests and target items.Once the data distribution changes,the correla-tions among interests may also change,and the spurious correlations will mislead the model to make wrong predictions.To solve such problem,we propose a novel model of Multi-Interest network with Stable Learning(MISL),which attempts to de-correlate the extracted interests,and thus spurious correlations can be eliminated.MISL applies an attentive module to extract multiple interests,and then selects the most important one for making final predictions.Meanwhile,MISL incorporates a weighted correlation estima-tion loss based on independence criterion,with which training samples are weighted,to minimize the correlations among extracted interests.Extensive experiments have been conducted under both Out-of-Distribution(OOD)and random settings,and up to 36.8%and 21.7%relative improvements are achieved respectively.

neural networksinformation retrievalrecommendation system

刘昭呈、朱振熙、刘强

展开 >

北京达佳互联信息技术有限公司,北京 100000

中国科学院自动化研究所 多模态人工智能系统国家重点实验室,北京 100000

神经网络 信息检索 推荐系统

国家自然科学基金

62206291

2024

山西大学学报(自然科学版)
山西大学

山西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.287
ISSN:0253-2395
年,卷(期):2024.47(3)
  • 43