首页|基于对抗型排序学习的混合推荐算法

基于对抗型排序学习的混合推荐算法

扫码查看
推荐系统可以帮助用户过滤海量信息,单一的推荐算法存在一定的缺陷,基于深度学习的混合推荐通过融入辅助信息可以有效缓解传统推荐算法中数据稀疏的问题,往往可以取得更好的推荐效果。在目前大多数的研究中,针对不同的算法都采用了具体的辅助信息,没有一个统一的混合推荐框架。该文提出了一种基于对抗型排序学习的混合推荐算法——MRecGAN(Mixed Recommendation Generative Adversarial Network);利用排序学习的思想将多个基础推荐算法融合,构建统一的辅助数据,挖掘特征之间的深层关系;并利用生成式对抗网络学习排序函数,通过一个判别器与两个生成器之间的协同对抗,提升各自性能,获得推荐序列;最后利用真实电影Movielens数据集结合辅助数据进行测试。实验结果表明,该模型较好综合了各基础模型的优点,NDCG(Normalized Discount-ed Cumulative Gain)等指标改善显著,MRR(Mean Reciprocal Ranking)相较于CML(Collaborative Metric Learning)提升32。05%。
Hybrid Recommendation Algorithm Based on Adversarial Learning-to-rank
The recommendation system can help users filter the massive amount of information.Every single recommendation algo-rithm has some defects.Mixed recommendation based on deep learning can effectively alleviate the problem of sparse data in tradi-tional recommendation algorithms by incorporating auxiliary information and often achieve better results.In most current studies,specific auxiliary information is used for different algorithms,but there is no unified hybrid recommendation framework.This paper proposed a hybrid recommendation algorithm based on adversarial learning-to-rank:MRecGAN.The idea of learning-to-rank was used to integrate multiple basic recommendation algorithms,built unified auxiliary data,and digged the deep relationship among fea-tures.It used generative adversarial networks to learn the sorting function,improved the performance of one discriminator and two generators,and obtained the recommendation sequence.Finally,the real Movielens dataset combined with auxiliary data was used for testing.The experimental results show that the model integrates the advantages of the basic models better.NDCG and other in-dexes improve significantly,MRR improves by 32.05%compared to CML.

adversarial networksauxiliary informationdata sparsityMovielensNDCG

许侃、吴鑫卓、林原、顾茜、林鸿飞、谢张

展开 >

大连理工大学 计算机科学与技术学院,辽宁 大连 116024

大连理工大学 公共管理学院,辽宁 大连 116024

大连理工大学 建设工程学院,辽宁 大连 116024

对抗网络 辅助信息 数据稀疏 Movielens NDCG

国家社会科学基金

20BTQ074

2024

山西大学学报(自然科学版)
山西大学

山西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.287
ISSN:0253-2395
年,卷(期):2024.47(3)
  • 31