首页|基于Min(c,V)唤醒机制和活跃阈值的云虚拟机调度优化

基于Min(c,V)唤醒机制和活跃阈值的云虚拟机调度优化

扫码查看
为了满足云用户对系统响应性能的需求,同时进一步提高云系统的节能水平,论文提出一种新型虚拟机调度策略。当虚拟机处于休眠状态时,一旦缓冲区内的云任务数超过服务台数c或者休眠定时器到时,所有的虚拟机便立即停止休眠进入唤醒状态。在唤醒期结束时,如果缓冲区内等待的云任务数达到阈值N,虚拟机由唤醒状态转入活跃状态,否则转入空闲状态等待云任务到达。基于上述背景,构建具有Min(c,V)策略与活跃阈值N的可变到达速率的多服务台排队模型。利用矩阵几何解方法,推导出云系统稳态性能指标,并构建合理的收益函数讨论云系统收益问题,综合数值分析验证了所提策略的有效性。
Scheduling Optimization of Cloud Virtual Machines Based on Min(c,V)Wake-up Mechanism and Active Threshold
In order to meet the demand of cloud users for system response performance and further improve the energy saving level of cloud system,this paper proposes a new virtual machine(VM)scheduling policy.When VMs are in the sleep state,once the num-ber of cloud tasks in the buffer exceeds the number of service stations c or the sleep timer ends,all VMs immediately stop sleeping and enter the wakeup state.Moreover,at the end of the wake-up period,if the number of waiting cloud tasks in the buffer reaches the threshold N,the VMs are transferred from the wake-up state to the active state.Otherwise,they are transferred to the idle state to wait for cloud tasks to arrive.Based on the above background,a multi-server queuing model with variable arrival rate and Min(c,V)mechanism and active threshold N is constructed.The steady-state performance indices of the cloud system are derived by using ma-trix-geometric solution method,and a reasonable benefit function is constructed to discuss the profit problem of the cloud system.Fi-nally,the effectiveness of the proposed policy is verified by comprehensive numerical analysis.

cloud computingwake-up mechanismMin(c,V)policyactive threshold optimization

李梦桃、徐秀丽

展开 >

燕山大学 理学院,河北 秦皇岛 066004

云计算 唤醒机制 Min(c,V)策略 活跃阈值优化

国家自然科学基金项目

62171143

2024

山西大学学报(自然科学版)
山西大学

山西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.287
ISSN:0253-2395
年,卷(期):2024.47(5)