首页|基于CHPSO算法的量子纠缠源温度控制系统

基于CHPSO算法的量子纠缠源温度控制系统

扫码查看
为了提高量子通信波段纠缠源系统的性能,设计并实现了一个基于竞争混合粒子群算法(CHPSO)的温度控制系统,该温控系统主要控制非线性晶体的温度。本文所提出的温度控制系统是将CHPSO算法结合比例-积分-微分(PID)控制算法,可以有效减少温控系统的超调量,提高系统的响应速度。结果表明,该系统在参数整定中的优化结果相较遗传算法(GA)、粒子群算法(PSO)、混合粒子群算法(HPSO)更接近全局最优,超调量分别降低了95。2%、89。1%和80。8%,调节时间分别降低了76。5%、19。7%和8。0%,仅有0。034 5 s,且多次运行偏差较小,鲁棒性更强,在温度控制等领域具有重要应用。
Temperature Control System of Quantum Entanglement Source Based on CHPSO Algorithm
In order to improve the performance of quantum communication band entanglement source system,a temperature control system based on competitive hybrid particle swarm optimization(HPSO)is designed and implemented.The temperature control sys-tem mainly controls the temperature of nonlinear crystals.The temperature control system proposed in this paper combines the CHP-SO algorithm with the proportional-integral-differential(PID)control algorithm,which can effectively reduce the overshoot of the temperature control system and improve the response speed of the system.The results show that the optimization results of the sys-tem in parameter tuning are closer to the global optimal than genetic algorithm(GA),particle swarm optimization(PSO)and hybrid particle swarm optimization(HPSO),the overshoot is reduced by 95.2%,89.1%and 80.8%,and the adjustment time is reduced by 76.5%,19.7%and 8.0%,respectively,to only 0.034 5 s,and the multiple operation deviation is smaller and more robust,which has important applications in temperature control and other fields.

entanglement sourcetemperature controlcompetitive mixed particle swarmPIDparameter setting

梁文哲、徐鹏、王宁

展开 >

山西大学 物理电子工程学院,山西 太原 030006

纠缠源 温度控制 竞争混合粒子群 PID 参数整定

国家自然科学基金

11904219

2024

山西大学学报(自然科学版)
山西大学

山西大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.287
ISSN:0253-2395
年,卷(期):2024.47(5)